
Leasing in a Market for Computing Capacity

Spyros Lalis and Alexandros Karipidis

Computer Science Dept.,
University of Crete, Hellas

{lalis,karipid}@csd.uoc.gr
Institute of Computer Science,

Foundation for Research and Technology, Hellas
{lalis,karipid}@ics.forth.gr

Abstract. One of the challenges in large scale distributed computing
is to utilize the thousands of idle personal computers connected to the
Internet. In this paper, we present a system that enables users to effort-
lessly and safely export their machines in a global market of processing
capacity. Efficient resource allocation is performed based on statistical
machine profiles and leases are used to promote dynamic task placement.
We show how leasing, as opposed to static resource allocation, yields a
natural renegotiation process through which prioritized computations re-
ceive better quality of service and resource providers enjoy bigger profits.

1 Introduction

The growth of the Internet has provided us with the largest network of inter-
connected computers in history. Many of these systems are often under-utilized,
a fact accentuated by the globe’s geography since “busy” hours in one time-zone
tend to be “idle” hours in another. Distributing computations over the Internet
is thus very appealing.

Several issues must be resolved for this to be feasible. Platform heterogeneity
must be overcome and security problems arising from the execution of code from
untrusted parties must be confronted. In order to register an available machine as
part of a computing infrastructure, a corresponding runtime environment must
also be downloaded and installed. This not only costs time but also introduces
several administration headaches, practically limiting current resource sharing
systems. Moreover, in most cases, little is done to make participation attractive
to third parties, which we believe is of key importance if such a system is to be
widely used.

In this paper we present a platform that addresses these problems, promoting
distributed computing over the Internet considerably. In this system, hosts ad-
vertise their intention to serve as resource providers in a global market. Clients
enter this market to locate machines that are appropriate for their computation.
Matchmaking between supply and demand occurs via an economy-based algo-
rithm producing contracts. Contracts have an expiration time, thus are essenti-
ally leases of use. In the case that resources are charged for, leasing guarantees

C. Linnhoff-Popien and H.-G. Hegering (Eds.): USM 2000, LNCS 1890, pp. 318–325, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Leasing in a Market for Computing Capacity 319

that profitable contracts will be assigned to resource providers without any in-
tervention on their behalf. With leases it is also possible to place an upper limit
to the amount of time prioritized computations can be blocked or experience
performance degradation due to other computations with less priority.

2 System Architecture

In order to guarantee cross-platform operability, yet at the same time minimize
administration overhead and achieve execution safety for hosts, the system is
implemented in Java. Providers connect to the system by pointing a web browser
to a given address from which the runtime system is automatically downloaded
to their machines as a Java applet. Client applications connect to the system via
an application programming interface (API).

Both providers and clients submit orders to a server, specifying their actual
and desired machine profile respectively. Hence, they act as sellers and buyers in
a market of computing capacity. Given the fact that any machine connected to
the Internet can place a sell order, and anyone can use the system API to write
applications issuing respective buy orders, a universal market is formed.

An overview of the system’s architecture is depicted in Fig. 1. The basic
system components are the market server, hosts, the host agent, schedulers,
tasks and client applications (or front-ends). The role of and the interactions
between these components are briefly discussed in the next subsections.

application
Client

ControlProtocolScheduler

MarketSchedulerProtocol

Market Server UploadProtocol

Host AgentHost Agent
HostAgentTaskProtocol

Task Task

HostAgentTaskProtocol

ComputationProtocol

ComputationProtocol
MarketHostAgentProtocol

Fig. 1. Overview of architecture

The Client Application is a program which needs to perform computations
that require considerable processing power. Through the system, it may either
distribute a computation across a number of machines or just delegate the exe-
cution of an entire computation to a fast idle machine to speed up execution.



320 S. Lalis and A. Karipidis

The Market Server is the meeting place for buyers and sellers of processing
power. It collects orders from clients and hosts. Using this information, it then
matches buy with sell orders and thus allocates resources.

A Host is a machine made available to be used by clients. A host participates
in the market through the Host Agent, a Java applet. The user visits a URL with
a Java enabled web browser and the agent is downloaded to her system. The
agent communicates with the market server, takes care of placing orders on
behalf of the user and executes tasks assigned to the host. It also provides the
market server with the benchmark scores needed for the host’s profile.

Computations consist of a Scheduler and one or more Tasks. The scheduler
runs on the market server, placing orders in the market for acquiring machines.
New orders can be issued at any time to adapt to changing application require-
ments or market conditions. When a host is allocated to the scheduler, a task is
launched in that machine to assist in completing the computation.

3 Resource Allocation

Host allocation is based on machine profiles. Both hosts (sellers) and clients
(buyers) submit orders to the market server, specifying their actual and desired
machine profile respectively. The profiles include the mean and variance for a set
of benchmarks over key performance characteristics such as integer and floating
point arithmetic. Part of a profile is also the host abort ratio, which is the ratio of
computations killed versus computations initiated on that host (a ”kill” is caused
when a host abruptly leaves the system in the midst of an ongoing computation).
The performance vectors and abort ratio of host machines are automatically
produced by the host agents. Profiles can be easily extended to include additional
information that could be of importance for host selection.

Further, a credit based [1] mechanism is used for charging. Credit can be
translated into anything that makes sense in the context where the system is
deployed. Within a non-profit institution, it may represent time units to facilitate
quotas or to introduce priorities. Service-oriented organizations could charge
clients for using hosts by converting credit to actual currency.

An economy-based mechanism is employed to match the orders issued by
providers and application clients. For each match, the market produces a lease,
which is a contract between a host and a client containing their respective orders
and the price of use agreed upon. Leases are produced using continuous double
auction [6]. A lease entitles the client to utilize the host for a limited amount
of time. If the client’s task completes within the lease duration, then the buyer
transfers an amount of credit to the seller as a reward, calculated by multiplying
actual duration with the lease’s price per second. If the lease duration is not
honored, an amount of credit is transfered from the dishonoring party to the
other as a compensation.

Since leases have an expiration date, it may not be possible to maintain the
same set of hosts allocated to a computation, for its entire duration. In fact,
this is highly unlikely to happen if the computation is lengthy, compared to



Leasing in a Market for Computing Capacity 321

the lease durations specified by the corresponding host providers. Moreover, at
some points in time, an application may not be able to get any hosts at all
to perform its tasks. As an example, Fig. 2 shows a trading scenario where
an application eventually fails to keep the same host due to a price raise. An
important consequence is that application schedulers must be able to also deal
with (temporary) unavailability of hosts.

submit bid

ack bid

lease offerlease start

submit bid

lease offer

Applet SchedulerMarket

ack bid

lease end

cancel bid

lease expiration

update bid

Fig. 2. A trading scenario

The trading protocol is designed to minimize communication between hosts
and the market (the number of hosts is expected to be very large). Hosts contact
the market only to submit/change their bids while the market communicates
with hosts only when their current lease status changes. The interaction between
the market and application schedulers is more tight in order to allow for flexible
and timely resource negotiation. Essentially, the market notifies schedulers each
time a bid can be converted into a contract as well as each time a contract is
about to expire. In the former case, the scheduler may either accept or turn
down the contract. In the latter case the scheduler may withdraw its bid (as in
Fig. 2), leave it unchanged, or update its bid to actively try to re-gain possession
of a host. Schedulers may also submit new bids at any point in time.

4 Leasing vs Buying Computing Resources

To illustrate the importance of leasing in an open environment, such as the
Internet, we present an experiment conducted using a prototype version of the
system. These measurements show how renegotiation affects both the quality of
service experienced by clients and the amount of credit collected by providers.

The scenario of the experiment for which the measurements were made is as
follows. We let two identical and resource intensive computations, C1 and C2,



322 S. Lalis and A. Karipidis

enter the system under conditions of resource scarcity, i.e. there is not enough
capacity to accommodate both computations at the same time. These com-
putations are assigned a different budget for performing their calculations; let
Budget(C1) << Budget(C2). Finally, the computation with the lower budget
(C1) is given a head start of a few seconds, followed by the other computa-
tion (C2). The same scenario is executed twice, one time for an infinite and the
other for a limited leasing duration respectively. Leases with no expiration date
lead to static resource allocation, meaning that once a resource is allocated to a
computation it will not be freed unless the computation terminates.

As it can be inferred from Fig. 3 static resource allocation has a particularly
disturbing effect. Since C1 enters the system first, it acquires all resources, and
continues to hold them even in the presence of C2, which has a bigger budget.
Assuming that budget reflects priority, this implies that a prioritized process
is actually blocked by another process of lower priority. Notice that blocking
occurs despite the fact that resources are auctioned. While auction mechanisms
guarantee price competition they require all competitors to be present when the
auction takes place. This is obviously impossible in an open system where clients
and providers may enter and leave anytime.

C2C1

A
uc

ti
on

pe
ri

od
is

10
se

cs

Limited lease duration (2 mins)

Time (secs)

A
llo

ca
te

d
ra

ti
o

10008006004002000

1

0.75

0.5

0.25

0

Unlimited lease duration

Time (secs)

A
llo

ca
te

d
ra

ti
o

10008006004002000

1

0.75

0.5

0.25

0

Fig. 3. Allocated resources



Leasing in a Market for Computing Capacity 323

This effect is largely eliminated case when resources are leased for a reasona-
bly limited duration. In this case, even though C1 seizes all resources upon entry,
these are re-allocated to C2 when the leases expire. Therefore, the total execu-
tion time of C2 is only slightly longer than the actual time spent for performing
the computation. This is a noticeable difference compared to the first case. Con-
versely, only when C2 terminates, can C1 reclaim these machines and complete
its execution. It can thus be said that leasing compensates for the impossibility
of predicting future system traffic in a dynamic system. In other words, leasing
is the analog of timesharing within a multiprocess system.

It is worthwhile pointing out another implication of leasing. Even though re-
source utilization is the same for both cases, providers collect more credits under
leasing, as shown in Fig. 4. This is particularly important in a real-life situation
were resources are unlikely to be given for free and providers wish to recuperate
their costs as quickly as possible. Notably, the increase in provider income does
not come at the cost of the low budget computation C1, which allocates resour-
ces at the same price yet at a later point in time. It is the computation with the
high budget that ”pays” more, but always according to its true valuation.

C2C1

A
uc

ti
on

pe
ri

od
is

10
se

cs

Limited lease duration (2 mins)

Time (secs)

C
re

di
t

(u
ni

ts
/s

ec
)

10008006004002000

15

10

5

0

Unlimited lease duration

Time (secs)

C
re

di
t

(u
ni

ts
/s

ec
)

10008006004002000

15

10

5

0

Fig. 4. Provider income



324 S. Lalis and A. Karipidis

Leases are also practical in cooperative environments. The lease duration
allows users to indicate when their hosts are under-utilized. Based on this kno-
wledge, tasks can be placed on hosts that will be idle for enough time, and
checkpoints can be accurately scheduled, right before a host becomes unavaila-
ble.

5 Related Work

Legion [7], Globus [5] and Condor [8] have mechanisms for describing resource
properties and performing matching. These mechanisms were created in order
to make it possible to respect local access control policies of hosts and were
not oriented towards a market-based approach. None of them uses auctions in
order to perform matching of computations to hosts and as a consequence, in
order to maximize income in a real market situation, providers would have to
constantly monitor the supply and demand for resources and change their offers
correspondingly. These systems are also architecture-specific which constrains
the market’s size and partitions competition. Finally, all require extensive admi-
nistration which prohibits a low overhead participation in the market.

Other systems using Java have been designed for supporting distributed com-
putations. Charlotte [3], automatically distributes computations over machines.
However, it does not employ market-based principles to allocate hosts. The mar-
ket paradigm has received considerable attention in distributed systems aiming
for and efficient resource allocation [4]. Popcorn [9] also uses auction mecha-
nisms but does not provide leasing, which as demonstrated above is required in
order to support a dynamic market. The Java Market [2] uses the framework
described in [1]. However, it does not use auctions, leasing or an interactive tool
for providers to specify and update the price for their machines. It is also not
suitable for interactive applications, as source code must be compiled on the
server and results are e-mailed back to the client. Therefore it is hard to provide
market services in the form of a coherent, user-friendly application which can be
installed on a client’s desktop.

Currently, no other system offers ease of participation, allocation decisions
assistance, economic efficiency and periodic renegotiation. We provide ease of
participation through an effortless web interface for sellers. Buyers also parti-
cipate easily by simply running market-aware applications as they would any
other application. Economic efficiency is achieved using auctions whereas alloca-
tion decisions are assisted through host profiling. Lastly, renegotiation is enforced
and – in combination with the auction mechanism – provides prioritization over
a network of heterogenous runtime environments.

6 Future Directions

An issue that we wish to investigate is how the cost of check-pointing (and
migrating between hosts) is weighed against the cost of keeping tasks on hosts



Leasing in a Market for Computing Capacity 325

with degraded performance. It would be interesting to contrast the performance
of leasing with checkpoints versus static allocation without checkpoints.

Moreover, we wish to experiment with schedulers capable of recording the
performance of previous allocations. Such schedulers can be regarded as the
“computational” counterparts of information agents that learn the users’ prefe-
rences and scan the web for corresponding documents. In our case accumulated
information can perhaps be converted into “experience”, leading towards more
adaptive resource allocation strategies responding to the different requirements
of individual applications.

Lastly we would like to look into trading and scalability issues. We are cur-
rently considering improvements to the way contract acknowledgment and expi-
ration is handled in order to support a more flexible and efficient re-negotiation
process between the market and application schedulers. Also, the current archi-
tecture is limited by the market server. A single server could not handle hosts
connecting to a truly world-wide version of this service. We intend to overcome
this problem by introducing multiple market servers that will allow traffic to be
shared among several geographically distributed servers.

References

[1] Y. Amir, B. Awerbuch, and R. S. Borgstrom. A cost-benefit framework for online
management of a metacomputing system. In Proceedings of the First International
Conference on Information and Computation Economies, pages 140–147, October
1998.

[2] Y. Amir, B. Awerbuch, and R. S. Borgstrom. The java market: Transforming the
internet into a metacomputer. Technical report, Johns Hopkins University, Center
for Networking and Distributed Systems, 1998.

[3] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff. Charlotte: Metacompu-
ting on the web. In Ninth International Conference on Parallel and Distributed
Computing Systems, September 1996.

[4] S. H. Clearwater, editor. Market-based Control: A Paradigm for Distributed Re-
source Allocation. World Scientific, 1995.

[5] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl
J. Supercomputer Applications, 11(2), 1997.

[6] D. Friedman. The double auction market institution: A survey. In D. Friedman and
J. Rust, editors, Proceedings of the Workshop in Double Auction Markets, Theories
and Evidence, June 1991.

[7] A. S. Grimshaw and W. A. Wulf. The legion vision of a worldwide computer.
CACM, 40(1):39–45, 1997.

[8] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource ma-
nagement for high throughput computing. In Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing, July 1998.

[9] O. Regev and N. Nisan. The POPCORN Market – an Online Market for Compu-
tational Resources. In Proceedings of the First International Conference on Infor-
mation and Computation Economies, pages 148–157, October 1998.


	Introduction
	System Architecture
	Resource Allocation
	Leasing vs Buying Computing Resources
	Related Work
	Future Directions



