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Abstract. In this paper we describe a new method of medical image
registration based on robust estimators. We propose a general hierarchi-
cal optimization framework which is both multiresolution and multigrid
with an adaptative partition of the volume. The approach may easily be
adapted to different similarity measures (optical flow, mutual informa-
tion or correlation ratio for instance) and may therefore be used either
for mono-modality or for multi-modality registration. Here, we concen-
trate on the estimation of the optical flow leading to a single-modality
non-linear registration. We aim at registering two MRI volumes of two
different subjects. Results on real data are presented and discussed. Since
this work is in progress, we expect more attractive and extensive results
for the time of the conference.

Keywords Registration, atlas matching, incremental optical flow, multi-
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1 Introduction

1.1 Context

Since the development of modern imaging techniques (MRI, X-ray, PET, etc.),
registration has become an important task in brain imaging. Nowadays sur-
geons must face not only the huge volume of data, but also the complementarity
between the different images. As a matter of fact, these informations are not
redundant but complementary, and should not be neglected for the health of
the patient. Functional data must therefore be merged or compared with the
use of an atlas. In order to build such an atlas, it is necessary to appraise the
anatomical variability, what implies the registration of the anatomy of different
subjects. We distinguish several registration applications:

– Registration of images of the same subject with the same modality. It is
useful for surgeons, either to follow the development of a disease, or for
operations (dynamic acquisition during the operation or validation of an
operation).

– Registration of images of a same subject with different modalities. This prob-
lem arose with the development of different images, either anatomical (MR,
X-ray) or functional (fMRI, PET, EEG, MEG). Merging these images is
desirable so that no information is excluded from the diagnostic.
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– Registration of brains of different subjects. Such a registration allows to
build an anatomical atlas of the cortex. Atlases such as [13,17] appear to
be inadequate (legibility, capacity to evolve, difficulty of interpretation [8]).
The major problem in building an atlas is the important variability of the
human brain. To take it into account, a non-linear registration process is
necessary.

1.2 Background

Medical image registration is a very productive field, from a bibliographical point
of view. [11] present a complete review and classification of different registration
procedures. Methods are usually classified using the following criterions: the
nature and the dimension of the homologous structures to match, the domain
of transformation (local or global), its type (rigid, affine, projective or “free
form”), the similarity measure and the minimization scheme. We have selected
a few methods that seem relevant to us:

The first method is Talairach’s stereotactic referential [17]. The purpose is to
enclose all the brains in the same box, which size and orientation are known. It
uses a piecewise linear transformation. Many methods use geometric attributes
that are extracted and then matched. They may be points [3], curves [15] or
surfaces [16]. The extraction of these landmarks is of course a crucial problem
(Is the extraction reliable? what is the number of landmarks that will invariably
be present?), but the way these landmarks are matched -and the way the regis-
tration is computed throughout the volume- is also critical. Methods have been
developed to overcome this problem: the TPS algorithm [3], spline transforma-
tions [16], or the ICP algorithm [15].

Other registration procedures are inspired by mechanical models, either elas-
tic [1], or fluid [4]. Fluid models allow to reach, in theory, any displacements,
but these methods are highly time-consuming.

Finally many registration procedures are “voxel-based” methods: Thirion
[18] proposes the demon method, by reference to Maxwell’s demons; Collins [5]
estimates a locally affine transformation that maximizes the cross correlation of
the image gradient.

1.3 Method

We propose in this paper a 3D method to estimate the optical flow, which is
related to the work presented in [12]. The estimation of a dense displacement
field leads to a non linear single modality registration. The problem is expressed
in a Bayesian context as the minimization of a cost function. We introduce robust
estimators in order to be less sensitive to the noise of acquisition (MRI data)
and to preserve the discontinuities of the dense displacement field.

Finally the optimization procedure is multiresolution and multigrid, in order
to accelerate the estimation and to improve its accuracy. We designed an adap-
tative partition of the volume in order to refine the estimation on the regions
of interest and to avoid useless efforts. This minimization framework, including
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the multiresolution/multigrid plan and the robust estimators, is not limited to
the estimation of the optical flow, but may be used as well for other similarity
measures (mutual information, correlation ratio for example). We are focusing
on different applications:

– Registration of MRI data of different subjects. The purpose is the automatic
segmentation and labeling of the cortex and the possibility to exchange sym-
bolic information from one brain to another.

– Registration of data from the same subject, for instance for fMRI acquisi-
tions. The goal is to correct the movement of the head during the time of
the protocol in order to ease the use and the interpretation of the data. In
that case, only a global affine field will be sought.

2 Optical Flow Estimation

2.1 General Formulation

The optical flow hypothesis, introduced by Horn et Schunck [9], assumes that the
luminance of a physical point does not vary much between the two volumes to
register. It gives: f(s+dws, t1)−f(s, t2) = 0 where s is a voxel of the volume, t1
and t2 are the index of the volumes (temporal index for a dynamic acquisition,
index in a database for multi-subject registration), f is the luminance function
and dw the expected 3D displacement field. Generally, a linear expansion of
this equation is preferred : ∇f(s, t) · dws + ft(s, t) = 0 where ∇f(s, t) stands
for the spatial gradient of luminance and ft(s, t) the difference between the two
volumes.

With the linearization, we are less sensitive to constant changes in the lumi-
nance due to the acquisition but only the projection of the displacement on the
luminance gradient may be estimated. Furthermore, the linearization makes the
estimation more sensitive to noise. For these reasons, it is necessary to introduce
a prior regularization on the solution. Within a Bayesian framework [7], and
using the MAP estimator, the problem is formulated as the minimization of the
following cost function:

U(dw; f) =
∑

s∈S

[∇f(s, t) · dws + ft(s, t)]2 + α
∑

<s,r>∈C
||dws − dwr||2 (1)

where S is the voxel lattice, C is the set of neighboring pairs (the 6 neighborhood
system may be used for instance) and α controls the balance between the two en-
ergy terms. The first term represents the interaction between the field (unknown
variables) and the data (given variables), whereas the second term expresses the
smoothness constraint. The weakness of this formulation are known:

a. The optical flow constraint (OFC) is not valid in case of large displacements
because of the linearization.

b. The OFC might not be valid in all the regions of the volume, because of the
noise of acquisition, intensity non-uniformity in MRI data, occlusions.



Medical Image Registration with Robust Multigrid Techniques 683

c. The “real” field is not globally smooth and it probably contains discontinu-
ities that might not be preserved because of the quadratic cost.

To cope with the (b) and (c) limitations, we replace the quadratic cost by robust
functions. Furthermore, to face the problem (a), we use a multiresolution plan
and a multigrid strategy to improve the minimization at each resolution level.

2.2 Robust Estimators

Cost function (1) takes into account all the voxels and all the pairs of neigh-
bors equally. This is not very robust, that’s why we would like to reduce the
importance of possible inconsistent data, or to avoid smoothing discontinuities
of the field that must be preserved. Therefore, we introduce robust functions [10]
and more precisely robust M-estimators [2]. An M-estimator ρ has the following
properties:

a. ρ is increasing on R
+. b. φ(u) �= ρ(

√
u) is strictly concave on R

+. c.
limx→∞ ρ′(x) <∞.

(a) implies that ρ is a cost function. (b) implies that the graph of ρ is the
inferior envelope of a set of parabolas. We have:

∃ψ ∈ C1([0,M ],R) such that ∀u, ρ(u) = min
z∈[0,M ]

(
zu2 + ψ(z)

)
(2)

where M �= limu→0+ φ′(u). Furthermore one gets :

z∗ �= arg min
z∈[0,M ]

(
zu2 + ψ(z)

)
=
ρ′(u)
2u

= φ′(u2)

where ρ′(u)
2u = φ′(u2) decreases from M to 0 according to (b) and (c).

The robustness of such an estimator is provided by the fact that the function
φ′ decreases. We introduce two robust estimators, the first one on the data term
and the second one on the regularization term. According to (2), the cost function
(1) can then be modified as:

U(dw, δ, β; f) =
∑

s∈S

δs (∇f(s, t) · dws + ft(s, t))
2 + ψ1(δs)

+α
∑

<s,r>∈C
βsr (||dws − dwr||)2 + ψ2(βsr) (3)

where δs and βsr are auxiliary variables (acting as “weights”) to be estimated.
This cost function has the advantage to be quadratic with respect to dw. When
a discontinuity gets larger, the contribution of the pair of neighbors gets lower by
the reduction of the associated weight βsr (βsr = φ′2(||dws−dwr||2)). In the same
way, when the adequation of a data with the model is not correct, its contribution
gets lower as the associated weight δs decreases (δs = φ′1([∇f(s, t) ·dws+ft]2)).
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Fig. 1. Incremental estimation of the optical flow

2.3 Multiresolution and Multigrid Approaches

In case of large displacements, we use a classical incremental multiresolution
procedure (see fig. 1). We construct a pyramid of volumes {fk} by successive
Gaussian smoothing and subsampling in each direction. At coarsest level, dis-
placements are reduced, and cost function (3) can be hopefully used. For the next
resolution levels, only an incremental dwk is estimated to refine estimate ŵk,
obtained from the previous level. This is done using cost function (3) but with
∇fk(s+ ŵk

s , t2) and fk(s+ ŵk
s , t2)− fk(s, t1) instead of ∇fk(s, t) and fk

t (s, t).

Furthermore, at each level of resolution, we use a multigrid minimization
(see Fig. 2). We aim at estimating an increment field not for one voxel, but for
a group of voxels in order to have temporarily a larger system of neighborhood.
The energy is consequently smoother, and has fewer local minima. As a matter
of fact, the cost (3) is highly non convex, and we might be trapped into a
local minimum. Moreover, this minimization strategy, where the starting point
is provided by the previous result - which we hope to be a gross estimate of the
desired solution -, improves the quality of the estimation and makes it possible
to use a deterministic relaxation instead of a stochastic one.

The multigrid strategy consists in partitioning initially the volume into cubes
of size 23l at the grid level l. The cost function (3) can then be expressed ac-
cording to the partition and a 12-dimensions parametric model is estimated as
an increment on each cube. The total field is therefore piecewise affine. The
displacement increment estimated on a cube depends on the total displacement
estimated on the neighborhood of this cube, what implies that the field will be
continuous between the cubes, and we do not have a “block” effect.

When we change the grid level, we also change the partition of the volume
by dividing, regularly or not, the previous partition. The criterion of subdivi-
sion may be either the measure of the way the model fits the data, or a prior
knowledge such as the presence of an important anatomical structure where the
estimation must be accurate (segmentation of the cortex, identification of the
cortical sulci). Consequently, we can distinguish between the regions of interest,
where the estimation must be precise, and the other regions where computation
efforts are useless.
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Fig. 2. Three-level multigrid relaxation at a given resolution level k

3 Results

Results of the 3D method are presented on figure 3. Two 3D MRI-T1 volumes
of two different subjects are registered. The reconstructed volume -with trilin-
ear interpolation- is presented, computed with the target volume and the final
displacement field. We also present two volumes of difference, one before and
the other after registration. The adaptative partition is also presented. We re-
fine the estimation in the regions of interest (cortex) whereas we do not waste
computation time on regions that do not necessitate too much attention.

The difference volumes are to be interpreted carefully, since we get the su-
perposition of two errors: the first one is the registration error, the anatomical
variability that we could not apprehend. The second error is due to the difference
of acquisition of the two volumes, which implies that the two original histograms
of the two volumes are different.

We notice that if some anatomical structures (ventricle, bulb) are correctly
registered, errors remain, in particular for cortical sulci. As a matter of fact the
variability is very high on these regions. It has been shown that this critical issue
cannot be correctly solved with voxel-based methods [6].

The computation takes 1 hours on a Ultra Sparc 30 (300 Mhz). The volumes
are 256 × 256 × 200. We use 3 levels of resolution because the displacement
amplitude may reach 30 voxels. We stop at the grid level 2 of the finest resolution,
because below this grid level the estimation of 12 parameters is inconsistent. It
should be noted that only 10 minutes are necessary to perform the estimation
until the grid level 3 of the finest resolution (where the cubes are 7mm large),
this means that almost 85% of the computation time is due to the last grid level.

4 Conclusion and Perspectives

We have presented in this paper a new registration method based on a robust
3D estimation of the optical flow with promising results on real data. We use
an efficient minimization framework, both multiresolution and multigrid with
robust estimators. This optimization scheme is not limited to the estimation
of the optical flow, but may as well be adapted to other similarity measures,
leading to different registration applications. The adaptative partition of the
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volume improves the computation time but does not degrade the estimation in
the regions of interest. We purchase different perspectives:

– The multigrid partition must be optimized so that no efforts are made in
certain regions (outside the brain for instance) whereas the estimation is as
accurate as possible in the regions of interest (cortex, cortical sulci).

– It could be desirable to correct the histograms -if it is not a constant bias-
of the two volumes [14], as the method is dependent on the optical flow
hypotheses. But if the difference of the two histograms is affine, only one ad-
ditional parameter needs to be estimated. This way to cope with the problem
is certainly more correct than any histogram modification.

– We intend to extend this minimization procedure to multi-modality regis-
tration. To that purpose, the similarity measure in the cost function must
be replaced by another (e.g. mutual information or correlation ratio).
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Fig. 3. Final results of the registration
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