Skip to main content

Instance Selection Using Evolutionary Algorithms: An Experimental Study

  • Chapter

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Abstract

In this chapter, we carry out an empirical study of the performance of four representative evolutionary algorithm models considering two instance-selection perspectives, the prototype selection and the training set selection for data reduction in knowledge discovery. This study includes a comparison between these algorithms and other nonevolutionary instance-selection algorithms. The results show that the evolutionary instance-selection algorithms consistently outperform the nonevolutionary ones, offering two main advantages simultaneously, better instance-reduction rates and higher classification accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriaans, P., and Zantinge, D., Data Mining, Addison-Wesley, 1996.

    Google Scholar 

  2. Back, T., Evolutionary Algorithms in Theory and Practice, Oxford, 1996.

    Google Scholar 

  3. Back, T., Fogel, D., and Michalewicz, Z., Handbook of Evolutionary Computation, Oxford University Press, 1997.

    Google Scholar 

  4. Babu, T. R., and Murty, M. N., Comparison of genetic algorithms based prototype selection schemes, Pattern Recognition, 34, 523–5, 2001.

    Article  Google Scholar 

  5. Baluja, S., Population-based incremental learning, Technical Report CMU-CS-94-163. Carnegie Mellon University, 1994.

    Google Scholar 

  6. Brighton, H., and Mellish, C., Advances in instance selection for instance-based learning algorithms, Data Mining and Knowledge Discovery, 6, 153–72, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  7. Brodley, C. E., Addressing the selective superiority problem: Automatic algorithm/model class selection, in Proc. 10th International Machine Learning Conference, Amherst, MA, 17–24, 1993.

    Google Scholar 

  8. Chapman, P., Clinton, J., Khabaza, T., Reinart, T., and Wirth, R., The CRISP-DM Process Model. www.crisp-dm.org, 1999.

    Google Scholar 

  9. Cover, T. M., and Hart, P. E., Nearest neighbor pattern classification, IEEE Transactions on Information Theory, 13, 21–7, 1967.

    Article  MATH  Google Scholar 

  10. Dasarathy, B. V., Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques, IEEE Computer Society Press, Los Alamitos, CA, 1991.

    Google Scholar 

  11. Devijver, P. A., and Kittler, J., On the edited nearest neighbor rule, in Proc. 5th Internat. Conf. on Pattern Recognition, 72–80, 1980.

    Google Scholar 

  12. Eshelman, L. J., The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination, in Foundations of Genetic Algorithms-1, Rawlins, G. J. E., (ed.), Morgan Kauffman, 265–83, 1991.

    Google Scholar 

  13. Fogel, D. B., Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press: Piscataway, 1995.

    Google Scholar 

  14. Frank, E., and Witten, I. H., Making better use of global discretization, in Proc. 16th International Conference on Machine Learning, Bratko, I., and Dzeroski, S., (eds.), Morgan Kaufmann, 115–23, 1999.

    Google Scholar 

  15. Gates, G. W., The reduced nearest neighbor rule, IEEE Transactions on Information Theory, 18(3), 431–3, 1972.

    Article  Google Scholar 

  16. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, New York, 1989.

    MATH  Google Scholar 

  17. Hart, P. E., The condensed nearest neighbor rule, IEEE Transaction on Information Theory, 14, 515–6, 1968.

    Article  Google Scholar 

  18. Holland, J. H., Adaptation in Natural and Artificial Systems, The University of Michigan Press, 1975.

    Google Scholar 

  19. Ishibuchi, H., Nakashima, T., and Nii, M., Genetic-algorithm-based instance and feature selection, in Instance Selection and Construction for Data Mining, Kluwer Academic Publishers, 95–112, 2001.

    Google Scholar 

  20. Kibbler, D., and Aha, D. W., Learning representative exemplars of concepts: An initial case study, in Proc. 4th International Workshop on Machine Learning,. Irvine, CA, Morgan Kaufmann, 24–30, 1987.

    Google Scholar 

  21. Kuncheva, L. I., Editing for the k-nearest neighbors rule by a genetic algorithm, Pattern recognition Letters, 16, 809–14, 1995.

    Article  Google Scholar 

  22. Kuncheva, L. I., Fitness functions in editing k-NN reference set by genetic algorithms, Pattern Recognition, 30(6), 1041–9, 1996.

    Article  Google Scholar 

  23. Kuncheva, L. I., and Jain, L. C., Nearest neighbor classifier: Simultaneous editing and feature selection, Pattern Recognition Letters, 20, 1149–56, 1999.

    Article  Google Scholar 

  24. Liu, H., and Motoda, H., Feature Selection for Knowledge Discovery and Data Mining, Kluwer Academic Publishers, 1998.

    Google Scholar 

  25. Liu, H., and Motoda, H., Instance Selection and Construction for Data Mining, Kluwer Academic Publishers, 2001.

    Google Scholar 

  26. Liu, H., and Motoda, H., Data reduction via instance selection, in Instance Selection and Construction for Data Mining, Liu, H., and Motoda, H., (eds.), Kluwer Academic Publishers, 3–20, 2001.

    Google Scholar 

  27. Liu, H., and Motoda, H., On issues of instance selection, Data Mining and Knowledge Discovery, 6, 115–30, 2002.

    Article  MathSciNet  Google Scholar 

  28. Nakashima, T., and Ishibuchi, H., GA-based approaches for finding the minimum reference set for nearest neighbor classification, in Proc. 1998 IEEE Conf. on Evolutionary Computation, IEEE Service Center, 709–14, 1998.

    Google Scholar 

  29. Pelikan, M., Goldberg, D. E., and Lobo, F., A survey of optimization by building and using probabilistic models, IlliGAL Report No.99018, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 1999.

    Google Scholar 

  30. Plutowski, M., Selecting Training Exemplars for Neural Network Learning, PhD Dissertation, University of California, San Diego, 1994.

    Google Scholar 

  31. Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.

    Google Scholar 

  32. Reeves, C. R., and Bush, D. R., Using genetic algorithms for training data selection in RBF networks, Liu, H., and Motoda, H., (eds.), Selection and Construction for Data Mining, Kluwer Academic Publishers, 339–56, 2001.

    Google Scholar 

  33. Reinartz, T., A unifying view in instance selection, Data Mining and Knowledge Discovery, 6, 191–210, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  34. Shanahan, J. G., Soft Computing for Knowledge Discovery, Kluwer Academic Publishers, 2000.

    Google Scholar 

  35. Witten, I. H., and Frank, E., Data Mining, Morgan Kaufmann Publishers, 2000.

    Google Scholar 

  36. Whitley, D., The GENITOR algorithm and selective pressure: Why rank based allocation of reproductive trials is best, Proc. 3rd International Conference on GAs, Schaffer, J. D., (Ed.), Morgan Kaufman, 116–21, 2000.

    Google Scholar 

  37. Whitley, D., Rana, S., Dzubera, J., and Mathias, E., Evaluating evolutionary algorithms, Artificial Intelligence, 85, 245–76, 1996.

    Article  Google Scholar 

  38. Wilson, D. L., Asymptotic properties of nearest neighbor rules using edited data, IEEE Trans. on Systems, Man, and Cybernetic, 2, 408–21, 1972.

    Article  MATH  Google Scholar 

  39. Wilson, D. R., and Martinez, T. R., Reduction techniques for exemplar-based learning algorithms, Machine Learning, 38, 257–68, 2000.

    Article  MATH  Google Scholar 

  40. Zhang, J., Selecting typical instances in instance-based learning, in Proc. 9th International Conference on Machine Learning, Sleeman, D., Edwards, P., (eds.), Morgan Kaufmann, 470–9, 1992.

    Google Scholar 

  41. Zhao, Q., and Higuchi, T., Minimization of nearest neighbor classifiers based on individual evolutionary algorithm, Pattern Recognition Letters, 17, 125–31, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cano, J.R., Herrera, F., Lozano, M. (2005). Instance Selection Using Evolutionary Algorithms: An Experimental Study. In: Pal, N.R., Jain, L. (eds) Advanced Techniques in Knowledge Discovery and Data Mining. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-183-0_5

Download citation

  • DOI: https://doi.org/10.1007/1-84628-183-0_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-867-1

  • Online ISBN: 978-1-84628-183-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics