ADMINISTRATION RIGHTS IN THE SDSD-SYSTEM

Joachim Biskup

University of Dortmund

44221 Dortmund

Germany

biskup @Is6.cs.uni-dortmund.de

Thomas Leineweber

University of Dortmund

Germany

Thomas.Leineweber @ uni-dortmund.de

Jorg Parthe

University of Dortmund
Germany

parthe @Is6.cs.uni-dortmund.de

Abstract The SDSD-system offers state-dependent access control in distributed object sys-
tems. The system enforces protocols which declare sets of activity sequences as
allowed, thereby forbidding any occurence of an activity outside the context of
an allowed sequence. In this paper we conceptually extend the SDSD-system
by introducing discretionary administration rights for controlling the activities
of declaring, binding and starting SDSD-protocols. Additionally, we introduce
second level administration rights for controlling the grant and revoke activi-
ties concerning administration rights. Exploiting the powerful potentials of the
SDSD-system, the new concepts are implemented by special administration pro-
tocols. Administration protocols are enforced with the same techniques already
used for application protocols concerning the functionality of the underlying ob-
ject system. In this environment recursive revocation is shown to be feasible.

Keywords: Security, distributed object system, administration of access rights, access con-
trol, state-dependent access rights, revoking rights, recursive revocation

150 DATA AND APPLICATIONS SECURITY XVII

1. Introduction

Access control is a fundamental mechanism for enforcing security require-
ments in computing systems. Conceptually, and highly simplified, access con-
trol comprises two phases. In the first phase, one or several security administra-
tors are declaring access rights, each of which state that some user is allowed to
perform some action on some object. In the second phase, each user request is
intercepted by a monitor that decides on the basis of the declared access rights
whether or not the request actually shall be executed. In implementations, usu-
ally these phases are interwoven, and participants of the computing system can
act both as administrator and as user. The basic approach of access control has
been refined in various ways in order to deal with more specific aspects. In this
paper we deal with the following aspects: state-dependent access rights, mon-
itoring for distributed systems, and constraining the administration of access
rights by access control in turn.

Concerning the first two aspects, we rely on our previous work [1, 5, 2] about
the design of state-dependent access control and its enforcement in distributed
object systems and the corresponding implementation by the SDSD-system (for
State-Dependent Security Decisions). Varying the basic approach, access rights
are no longer statically granted until an explicit revocation. Rather, in a con-
ceptually first phase an administrator declares so-called protocols in order to
specify which kinds of activity sequences of the distributed object system are
considered to be allowed for formal participants. After instantiating a protocol
by binding actual participants to the formal participants and starting a concrete
instance of such an activity sequence, the distributed monitoring system assigns
and withdraws dynamic access rights on a short term basis for just a single ac-
tivity, thereby enforcing that only allowed sequences can actually occur.

For example, an administrator for an insurance company can allow activ-
ity sequences of the following form (which informally circumscribes a formal
protocol presented in Figure 2 of [2]): each such sequence starts by drafting
a contract, followed by a careful inspection with an acceptance decision; de-
pendent on this decision: either the contract is confirmed and subsequently
either it becomes valid based on a timely payment or it is rejected based on
a missed payment deadline; or the contract is immediately rejected. While
enforcing state-dependent access control, for instance the activity “contract re-
jection” cannot occur as an isolated event, rather it is dynamically enabled only
just after the pertinent event of “missed deadline” or “negative inspection”,
respectively, and after an actual execution, the activity “contract rejection” is
immediately blocked again.

The present paper aims at extending the SDSD-system with respect to the
third aspect mentioned above, namely, how in turn to control the administration
of allowed activity sequences. More specifically, we first address the most

Administration Rights in the SDSD-System 151

urgent problem: How to allow participants of the system to act as administrator
who can declare protocols, bind actual participants to an instantiated protocol
and start a concrete activity sequence? We even go one level further and
address the immediate follow-up problem: How to allow participants to allow
other participants to act as administrator? Additionally, we also consider
the revocation problem for both levels: How to revoke allowances to act as
administrator or to grant such allowances, respectively?

In terms of our example, we deal with the problem how one or more “ad-
ministrators” are dynamically introduced and controlled, and how a protocol of
the sketched kind is coming into existence and exploited in a controlled fash-
ion. Abstractly speaking, we investigate the problem of administration rights
within the framework of state-dependent access control in distributed object
systems. This problem has been studied before within different frameworks,
including theoretical studies on deciding the possibility of the proliferation of
aright (showing undecidability in general [8] and decidability of special cases
like the take-grant model [10]), mechanisms for dynamic rights amplification in
systems like UNIX (by the suid-flag) [6] or Hydra [17], a variety of revocation
options as in Oracle [11, 12] or role-based administration of roles [16, 4].

Though our solutions are original for our framework, as discussed in detail in
Section 6, they are based on an established paradigm, namely, to smoothly inte-
grate the control of the administration with the control of the primary function-
ality. Furthermore, we follow the well-known paradigm of discretionary access
control. More specifically, the contributions of this paper can be summarized
as follows: (1) By re-examining our SDSD-system, we identify fundamental
administration tasks, namely protocol declaration, protocol (instance) binding,
and protocol (instance) starting (Section 2). (2) Based on the literature, we set
up a conceptual design with discretionary administration rights as first level
rights for the fundamental administration tasks and corresponding second level
rights for controlling those of the first level. This design also includes the no-
tion of ownership and control of revocations (Section 3). (3) Exploiting the
powerful potentials of the SDSD-system, we implement the design by defin-
ing appropriate administration protocols for the SDSD-system, which are then
shown to enforce the conceptual administration rights by the (slightly extended)
mechanisms of the SDSD-system (Section 4). Some details of the implemen-
tation are demonstrated by considering the “GrantGrant right” as an example
(Section 5). (4) We sketch that even recursive revocation can be integrated into
the extended SDSD-system. (5) The implementation is available as a prototype,
implemented in JAVA and CORBA.

On first sight, our contributions seem technically specific for the SDSD-
system. However, we emphasize that — independently of the specific control
system under consideration — the administration of rights always does not only
have static implications, but also dynamic ones.

152 DATA AND APPLICATIONS SECURITY XVII

2. The SDSD-System

The SDSD-system has been presented in [2] and its theoretical foundation
in [1, 5]. Here, we will give only a short overview of the system. The SDSD-
system realizes a state-dependent access control in a distributed object system.
The monitored objects communicate via a CORBA Object Request Broker.
Every monitored object (also called functional object) is wrapped by its own
security object. The functional object and its security object form a so-called
(actual) participant. A method call is permitted if an appropriate dynamic right
is present. These rights are automatically granted and revoked by the system
dependent on the current state and based on allowed activity sequences. The
building components of these allowed activity sequences are triples consisting
of an activator, an executor and an action. Such a triple, named step, expresses
that the participant which acts as the executor performs an action (i. e. a method
call on his functional object) on behalf of the participant which acts as the
activator.

The specification of the allowed activity sequences is done with a so-called
protocol. A formal definition of the language for protocols is given in [3]. The
core of a protocol is a regular expression on steps. A step specifies a building
component of an activity sequence and accordingly comprises an identifier
for the activator, an identifier for the executor and an action (step rule). The
latter is specified by an action identifier (first action rule) possibly followed by
appropriate parameters (second action rule and param rules). Though desirable
in any protocol, parameters have not been generally supported in the prototype,
but they are needed and actually implemented for the specific types of protocols
introduced in Section 4. The identifiers used to determine activator and executor
of a step have to be declared in the remainder of the protocol and are the so-
called formal participants. These are placeholders for the actual participants,
who act as activator and as executor, and have to be bound before a concrete
activity sequence is monitored.

When a new activity sequence should be started in the context of monitoring
an application, several administration activities additionally have to take place.
Some of them are under the control of the users of the application, others are
done by the system, transparently for the users. Figure 1 gives an overview of
the main activities and the order of their execution. The gray arrows and boxes
show the functionality of the basic SDSD-system. The black arrows and the
white boxes show the extensions introduced in Section 3 (et. seqq.).

First, some user has to specify the allowed activity sequences by declaring
an application protocol. Next, the protocol has to be instantiated and bound.
Therefore, another or the same user as before performs the binding activity.
Thereby, he assigns actual participants to the formal participants considering
the type constraints listed in the application protocol. As result of this activ-

Administration Rights in the SDSD-System 153

Activities callable Activities transparent

by the Users for the Users
— P T

s permits 'l
Granting

2 4 . Conceptual Static

Administration Right
Sk g Administration Right |

Il
concoptualy _(1\ cvr | 2 tevet bepe o

” I permits

o — s m— s e— e s — e E— b m— e

.
.

f
Application | Administration
Protocal Protocol \
2
E Binding
e Administration
Protocol
Application Administration < i

Starting
Administration
Automaton

Application
Automaton

i

\‘._ % Distributed Representation 2
) of the Automaton
| : |
}fi Token Instance b
(Dynamic Right) 2
S I
& \
Q‘a = = L] .
L
Executing 4
Application Activity
|
——————3» DataFlow =+ == P Control Flow controlled by the Users
— = = Conceptual Data Flow ==+ » =j= Control Flow controlled by the System

Figure 1. Overview of the main administration activities (declaring, binding, starting and
granting) and the order of their execution. The functionality of the basic SDSD-system is
represented by the gray arrows and the gray boxes, the proposed extensions are represented by
the black arrows and the white boxes.

154 DATA AND APPLICATIONS SECURITY XVII

ity, a finite automaton is generated, which accepts exactly those sequences of
steps (respectively the corresponding activity sequences) that are specified by
the regular expression of the protocol. In the remainder this finite automaton is
called application automaton. A declared application protocol can be instan-
tiated and bound several times. After generating an application automaton, it
has to be started. Therefore, some user performs the starting activity, which
has two effects. First, a distributed representation of the application automaton
is created and sent to the participants which are involved in that automaton.
Second a virtual security token “is created”.

Abstractly seeing, this token dynamically permits the execution of an appli-
cation activity. Therefore, it is automatically forwarded to the participant who
acts as the activator of the step which shall be executed next. The selection is
taken by using the distributed representation of the automaton and is described
at the end of this section. During the forwarding process the token is slightly
changed, accordingly, in Figure 1 it is called token instance. After completion
of an application activity the token is appropriately modified and forwarded
again according to an activity sequence specified in the application automaton.
In some sense, this token represents a dynamic right, since it is revoked imme-
diately after single usage. After forwarding the token, the execution of a next
application activity is permitted and so on. When the automaton reaches a final
state the sequence is finished, thus the token and the distributed representation
of the automaton are deleted.

The token and the process of forwarding it from one participant to another
— as described above — are an abstract explanation of the actually used access
control mechanism. Technically seeing, the security objects of the participants
negotiate which application activity is permitted next by interchanging pre-
defined messages. At first, the executor of the last executed step (called last
executor) sends offer messages to the activators of possible next steps (accord-
ing to the application automaton). If the functional object of an activator wants
to execute the action belonging to the step, the activator answers with a get mes-
sage. The last executor replies to one of the get messages he receives with a put
message. This behaviour corresponds to forwarding the token in our abstract
explanation. The receiving activator sends an invoke message to the executor
of the belonging step. The invoked executor executes the action according to
the step description. Thus, this step (respectively this application activity) is
completed. Then the invoked executor sends — as the new last executor — new
offer messages and so on.

All messages are interlinked by sequence numbers (this, among others,
changes the token). Furthermore, messages as well as the application automa-
tons are cryptographically signed and locally logged by the security objects to
detect security violations.

Administration Rights in the SDSD-System 155

3. Considered Problem and Approach

The SDSD-prototype, as reported in [2], only monitors the application ac-
tivities but not the additional administration activities which might be crucial
for achieving overall security: (1) Declaring Application Protocol, (2) Binding
Application Protocol and (3) Starting Application Automaton. In Figure 1 this
situation is indicated by showing a (gray) “monitoring box” on top of “Execut-
ing Application Activity” but not on top of the listed administration activities of
the basic SDSD-system (the gray rounded boxes). In this paper we investigate
in depth the problem of how the listed administration activities can be moni-
tored by an extended SDSD-system, too. In terms of Figure 1, we will provide
(the white) “monitoring boxes” for the administration activities such that ap-
plication activities and administration activities are homogeneously supervised
within the new SDSD-system.

We reconstruct the SDSD-system in a way, that the system offers so-called
administration operations, which are used within the administration activities
to accomplish the administration tasks. These operations are: (1) declare (a new
application protocol), (2) undeclare (an application protocol), (3) bind (partic-
ipants to an application automaton), (4) remove (a bound, but not yet started
application automaton), and (5) start (an already bound application automaton).

As shown in Figure 1, the execution of an administration activity is monitored
by the system (indicated by the boxes above the corresponding activity sym-
bols; undeclaration and removal are not shown there). On a conceptual layer,
these administration activities are permitted by first level static administration
rights. These administration rights are granted and revoked — discretionarily —
by the participants, sometimes directly with the aid of one of the two additional
administration operations (1) grant (an administration right) and (2) revoke (an
administration right, more exact: revoke a grant), or sometimes as a side effect
of one of the other administration operations. The holder of an administration
right is able to use it until the grantor revokes the originating grant as an explicit
action by calling the revoke operation. Calling the grant or the revoke operation
(revoke is not shown in Figure 1) is an administration activity itself, thus it is
also monitored by the system. Conceptually seeing, their execution is permitted
by a second level static administration right.

The set of administration right types is shown in Table 1. The GrantGrant
right permits the execution of the administration activity grant, whereby the
GrantGrant right, the GrantDeclare and the Declare right can be granted to
any other participant of the system. The holder of the GrantGrant right is also
allowed to revoke the grants caused by himself. The GrantDeclare right is a
limited version of the GrantGrant right, i.e. granting a right and revoking a
grant is restricted to the Declare right. A participant needs the Declare right
to declare new application protocols or undeclare application protocols that he

156 DATA AND APPLICATIONS SECURITY XVII

Right Abbreviation Permits

GrantGrant gg granting gg, gd, d, resp. revoking corresponding
grants caused by the holder of gg

GrantDeclare gd granting d, resp. revoking corresponding grants
caused by the holder of gd

Declare d declaring new protocols resp. undeclaring
protocols caused by the holder of d

Own o[Protocol prot] granting b[prot], s[prot, Automaton aut],
s[prot], resp. revoking corresponding grants

Bind b[Protocol prot] instantiating protocol prot (incl. binding)

resp. revoking corresponding not yet started
instances caused by the holder of b[prot]

Start s[Protocol prot] starting automatons
that are instances of protocol prot
Start(Instance) s([Protocol prot, starting automaton aut
Automaton aut] that is instance of protocol prot

Table 1. Summary of the administration right types.

has previously declared. The declarant of a protocol becomes the owner of it,
i.e., he gets automatically the Own right. The owner of a protocol is allowed to
grant all rights w.r.t. the protocol, namely, the Bind right and the two different
types of the Start right and to revoke corresponding grants. The Bind right is
necessary to instantiate an application protocol, i.e., to generate an application
automaton and bind participants to this automaton. The first type of the Start
right is solely referring to a protocol prot . The holder of this right is allowed
to start any automaton that is an instance of prot . The other type of the Start
right is additionally referring to a specific automaton instance aut, i.e., only
this automaton instance can be started. Both types do not permit the abortion
of any automaton, no matter who has started it. In contrast, the holder of the
Bind right is allowed to remove automatons that he has previously bound. But
if such an automaton is already started, its removal is forbidden.

4. Implementation

In Section 3 we have introduced conceptual static administration rights,
which conceptually permit the execution of administration activities. These
conceptual rights are different in kind from the dynamic rights (token) described
in Section 2. The administration rights are explicitly granted and revoked by
executing an appropriate administration activity. Furthermore, they can be
repeatedly used (considering resource restrictions). In contrast, the dynamic
rights are automatically assigned and withdrawn by the system. The withdrawal
occurs directly after single usage.

Administration Rights in the SDSD-System 157

To overcome these differences, we introduce a set of specialized protocols,
called administration protocols. As shown in the right part of Figure 1, when a
participant grants an administration right to another participant (or to himself),
an appropriate administration protocol is chosen and bound (both within the
binding administration protocol activity). The administration automaton gen-
erated in that process has two purposes: (1) It permits the grantee (holder) to
execute all administration activities that are allowed by the granted administra-
tion right (e.g. grant an administration right to a participant on his own). (2) It
permits the grantor to execute the activity “revoke the granted right, represented
by this automaton”. (Actually, as shown in Section 5, a special participant is
allowed to end the automaton on behalf of the grantor.)

Next, this administration automaton is started. Analogously to starting an
application automaton, a distributed representation of the automaton and a token
(instance) are created. From this stage forth, the access control of administration
activities is enforced almost in the same manner as the control of application
activities. Only the selection which activator gets the put message is taken
differently, namely on the basis of assigned priorities. As shown in Figure 1,
binding an administration protocol and starting an administration automaton
is not monitored by the system, since these activities are only initiated and
executed by the system itself.

Apart from the participants mentioned in Section 2 (in the following called
functional participants), other so-called special participants participate in ad-
ministration automatons. These participants provide the operations that are used
to carry out the administration tasks. There are three different types of special
participants: ProtocolManager, ProtocolStarter and GrantManager. Partici-
pants of the first type, for simplification also called ProtocolManager (Proto-
colStarter and GrantManager, respectively), offer the operations for declaring
(declare) and undeclaring (undeclare) application protocols. Operations for
instantiating application protocols (bind) as well as starting (start) and re-
moving (remove) application automatons are provided by the ProtocolStarters.
GrantManagers offer the operations for granting (grant) administration rights
and revoking (revoke) corresponding grants. Furthermore, they gather the in-
formation on behalf of the functional participants, which administration rights
those got, by whom and at what time. Each functional participant has exactly
one GrantManager assigned to him. But one GrantManager can be assigned to
several functional participants. Special participants do not have a functional ob-
ject but only the (normally wrapping) security object. They do not need any user
interaction. Thus, they can be settled on any host, particularly on especially
secured hosts. Due to this property, they can be protected against malicious
changing, therefore they are trustworthy participants. This trustworthiness is
necessary, because crucial security checks have to be done in the context of the
administration activities.

158 DATA AND APPLICATIONS SECURITY XVII

automatlD // GrantGrant Autc
holder grantManagerOfHolder grant(gg, holder, ParticipantClient grantee)
holder grantManagerOfHolder grant(gd, holder, ParticipantClient grantee)
holder grantManagerOfHolder grant(d, holder, ParticipantClient grantee)

grantManagerOfGrantor grantor

O —~\ inform(revokeEvent) O
grantManagerOfGrantor ‘el

grantManagerOfHolder
enforceRevoke(automatiD)

holder grantManagerOfHolder announceRevoke (String grantEventiD, gg, holder)
holder grantManagerOfHolder announceRevoke (String grantEventlD, gd, holder)
helder grantManagerOfHolder announceRevoke (String grantEventiD, d, holder)
formal participants:

ParticipantClient holder, grantor;

GrantManager grantManagerOfHolder, grantManagerOfGrantor;

variables:

Permission gg, gd, d;

String automatiD;

RevokeEvent revokeEvent;

semantic constraints:

gg has type GrantGrant; holder is client of grantManagerOfHolder;

gd has type GrantDeclare; grantor is client of grantManagerOfGrantor;

d has type Declare; revokeEvent relates to automaton automatiD;

Figure 2. Automaton for the GrantGrant administration protocol

5. Some Details for Granting the GrantGrant Right

Granting a right is done by invoking the grant operation on a GrantManager.
During the execution of the grant operation an appropriate administration proto-
col is bound to get an administration automaton. This administration automaton
is then started. In this section we show some details of the GrantGrant right.
The other rights introduced in Section 3 are treated similarly, as described in
[13].

The administration protocol for the GrantGrant right is shown as an automa-
ton in Figure 2. At this stage, the description of the protocol contains some
additional information, which will be used during the process of creating the
administration automaton and binding participants to the automaton. This in-
formation consists of (1) a list of the formal participants, (2) a list of variables
and (3) a set of semantic constraints. The list of the formal participants spec-
ifies the types of the participants, who have to be bound to the automaton. In
the case of the GrantGrant automaton these are (i) the grantor, (ii) the Grant-
Manager that is assigned to the grantor (grantManagerOfGrantor), (iii) the
grantee called holder and (iv) his GrantManager (grantManagerOfHolder).
The “assigned to” relations are guaranteed by testing the two is client of
semantic constraints. In contrast to general practice, separation of duties is not

Administration Rights in the SDSD-System 159

enforced in the case of binding an administration automaton. This is necessary
in the case of granting a right to oneself, when the grantor and the grantee
are identical. The list of variables defines variables to which values (resp.
objects) have to be assigned during the binding process. Inter alia, these are
three objects gg, gd and d, one for every right that can be granted by holding
the GrantGrant right. The has type semantic constraints guarantee that ev-
ery object has the correct type according to its name as specified in Table 1.
The variable automatID records the unique identifier for this automaton. The
variable revokeEvent is used during the revocation of a right.

After binding, the GrantGrant automaton is started, i. e. execution of a first
step is offered to the eligible participants. The holder receives six offer mes-
sages (see Section 2 for an explanation) to execute a step, one for each step
in which the holder can act as the activator. Three offer messages apply to
the steps with the parameterized action grant, and three to the steps with the
parameterized action announceRevoke. The grantManagerOfGrantor gets
one offer for the step with the parameterized action enforceRevoke. He ac-
cepts this offer only if his client, i.e. the grantor, has instructed him to revoke
the grant that has led to this automaton. If he accepts, the enforceRevoke step
has the highest priority so that it will be the next step in this automaton.

By choosing one of the three offered grant steps the holder is able to
grant the GrantGrant, the GrantDeclare or the Declare right to any functional
participant. The grant operation offered by the GrantManager of the holder
expects three arguments. In each case the first two are already set to values
that are determined during the binding process. Considering the preceding type
information (ParticipantClient is the common supertype of all functional
participants) the argument for the last parameter grantee can be freely chosen.

By predetermining some values during the binding process, the holder is
restricted to choose the parameters for the grant operation suitably according to
the description of the right he holds. In the present case the first parameter states
the right that could be granted. With the aid of the second one, the invoked
GrantManager is informed about the fact that the passed holder will be the
grantor of the grant activity that should be performed under the GrantGrant right
held by the holder. As result of granting the right, the invoked GrantManager
generates and starts a new administration automaton. In that second automaton
the grantee of the grant acts as the holder and the grantor of the grant (the
holder in the first automaton) as the grantor.

If in the first automaton the holder wants to revoke a grant that he has pre-
viously caused, he invokes one of the three announceRevoke steps, depending
on the granted right. The only argument that has to be handed over by the holder
is a value for the parameter grantEventID. The invoked GrantManager of the
holder expects an identifier of an automaton that was caused by the grant of a
right. The holder gets such identifiers as a return value of the grant opera-

160 DATA AND APPLICATIONS SECURITY XVII

tion. The other two already set arguments ensure that the holder is just able
to revoke automatons that are caused by his grants.

The name of the operation announceRevoke expresses the fact that at this
point the GrantManager (of the holder in the first automaton) is merely charged
with the revocation. The actual enforcement is done in another automaton,
because revoking a grant means to end the automaton that resulted from this
grant. Therefore the GrantManager keeps the necessary information in his
internal attributes and waits for an offer to execute the enforceRevoke step
in the automaton, that should be ended. Normally, he has already got such an
offer, since this step, resp. its edge, begins at the initial state of the automaton.
If the holder of the second automaton (who is the grantee in the grant
step of the first automaton) is accepting his offer, i.e. he executes a grant
or an announceRevoke step, the offer for the enforceRevoke step has been
invalidated. But after completion of the grant or announceRevoke activity,
the automaton will be transferred to the initial state and inter alia an offer for the
enforceRevoke step will be sent again. When the enforceRevoke operation
is executed, the GrantManager gets to know that the holder of the second
automaton (who is assigned to the GrantManager) will lose a right soon. Thus,
the GrantManager examines within this operation, whether further revocations
have to be recursively done. Further details of the revocation are presented in
[3], which also contains a concrete example for using the GrantGrant right.

6. Related and Further Work

The idea to administrate an access control system like the SDSD-system
with the help of itself is very appealing, but there are not many systems with
this property. Mostly, a further higher level access control system is used to
administrate a basic access control system. In [7] the access control system is
explicitly decomposed into an enforcement manager and a policy manager. In
contrast, in the SDSD-system, the administration of the policy is done with the
help of the system itself.

A widely known self-administrable access control system is Role-Based Ac-
cess Control (RBAC, [14]). The administrative layer is ARBAC97 [15] respec-
tively ARBAC99 [16] (Administrative Role-Based Access Control). It is based
on and used for a decentralized administration of Role-Based Access Control
systems. The administration system is partitioned into different components.
In ARBAC these components are for user-role assignments, permission-role
assignments and role-role assignments. These components consist of adminis-
tration concepts to create, modify and remove those assignments. In the SDSD-
system, there are similar assignments, but as a difference, the activities leading
to these assignments are controlled. Another model for self-administration of
RBAC is SARBAC (Scoped Administration of Role-Based Access Control,

Administration Rights in the SDSD-System 161

[4]). Itis also uses RBAC for the control of a RBAC-system, but is somewhat
different to handle.

An example for a system with dynamic internal administration of rights is
Hydra [17]. It assigns rights to runtime objects (of the Hydra type local
namespace) based on rights of the originating static object and based on rights
of the calling object. The UNIX operation system has also the concept of
dynamic rights amplification by the suid- and the guid-flag [6]. It allows the
owner of a program to give other users additional rights when executing this
program. These additional rights are limited to the rights the owner of the
program already has. But if the owner of the program wants that a second user
shall grant rights on the program to a third user, the ownership of the program
has to be transferred to the second user.

The separation into the different administration activities Declare, Bind and
Start has its similarities in Workflow Management Systems [9]. There, the
administration tasks involved in the creation of a new workflow are the speci-
fication of a workflow process definition itself and the creation and the start of
a workflow process instance. The declaration of a SDSD-protocol corresponds
to the specification of a new workflow process definition, and the process of
binding and starting corresponds to the creation and start of a workflow process
instance. In contrast to the Workflow Reference Model, our model explic-
itly distinguishes between the two tasks of creating and starting a new process
instance.

Some further work has also to be done: It may be feasible to provide the
system with the ability to transfer the ownership of declared protocols to another
participant or to separate the ownership of a protocol from the right to grant the
Bind or the Start right by introducing some additional administration rights.

Our current prototype supports only one ProtocolStarter, one ProtocolMan-
ager, one place to store the declared application protocols (Protocol Repository)
and one place of the not yet started application automatons (Protocol Instance
Repository). A policy for the visibility aspects has to be specified and an appro-
priate mechanism has to be developed to overcome this limitation. Furthermore,
it is desirable that the system supports the abortion of an already started au-
tomaton. As a first idea, the protocol definition language can be expanded to
mark states of the automaton (maybe called checkpoints) at which it can be
aborted in a safe manner. Another important administration activity which is
not yet included in our system is the introduction of new participants into the
SDSD-system. This activity also might be controlled by another administration
right.

References

[1] Joachim Biskup and Christian Eckert. About the enforcement of state dependent security
specifications. In T. F. Keefe and C. E. Landwehr, editors, Database Security VII, pages

162 DATA AND APPLICATIONS SECURITY XVII

3-17. North-Holland, 1994.

[2] Joachim Biskup and Thomas Leineweber. State-dependent security decisions for distributed
object-systems. In M. S. Olivier and D. L. Spooner, editors, Database and Application
Security XV, pages 105-118. Kluwer, 2002.

[3] Joachim Biskup, Thomas Leineweber, and Jorg Parthe. Administration Rights in the
SDSD-System. Technical report, University of Dortmund, 2003. Link at 1s6-www.cs.
uni-dortmund.de/issi/publications/2003.html.

[4] Jason Crampton. Authorization and Antichains. PhD thesis, University of London, February
2002.

[5] Christian Eckert. Zustandsabhi;Vzgige Sicherheitsspezifikationen und ihre Durchsetzung.
Berichte aus der Informatik. Shaker Verlag, 1997.

[6] S. Garfinkel and G. Spafford. Practical UNIX and Internet Security. O’Reilly, 1996.

[7] Robert Grimm and Brian N. Bershad. Separating access control policy, enforcement, and
functionality in extensible systems. ACM Trans. on Computer Systems, 19(1):36-70, 2001.

[8] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating
systems. Communications of the ACM, 19(8):461-471, 1976.

[9] D. Hollingsworth. The workflow reference model. Document No. TC00-1003, 1995. Issue
1.1

[10] R.J. Lipton and L. Snyder. A linear time algorithm for deciding subject security. Journal
of the ACM, 24(3):455-464, 1977.

[11] Oracle Corp. Oracle9i Database Administrator’s Guide, 2002. Part No. A96521-01.

[12] Oracle Corp. Oracle9i SOL Reference, 2002. Part No. A96540-01.

[13] Jorg Parthe. Deklaration und Ausfiihrung neuer Handlungsabfolgen fr zustandsabhingige
Handlungsrechte. Diploma thesis, Universitit Dortmund. 1s6-www. cs.uni-dortmund.
de/~parthe/downloads/par02.pdf, 2002.

[14] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control
models. IEEE Computer, 29(2):38-47, February 1996.

[15] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97 model for role-
based administration of roles. ACM Trans. on Information and System Security, 2(1):105-135,
1999.

[16] Ravi Sandhu and Qamar Munawer. The ARBAC99 model for administration of roles. In
15th Annual Computer Security Applications Conference, pages 229-240, December 1999.

[17] W. A. Wulf, R. Levin, and S. P. Harbison. Hydra/C.mmp: An Experimental Computer
System. McGraw-Hill Book Company, 1981.

