Skip to main content

EUCLIDEAN RANDOMMATRICES:SOLVEDAND OPEN PROBLEMS

  • Conference paper
Applications of Random Matrices in Physics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 221))

Abstract

In this paper I will describe some results that have been recently obtained in the study of random Euclidean matrices, i.e. matrices that are functions of random points in Euclidean space. In the case of translation invariant matrices one generically finds a phase transition between a phonon phase and a saddle phase. If we apply these considerations to the study of the Hessian of the Hamiltonian of the particles of a fiuid, we find that this phonon-saddle transition corresponds to the dynamical phase transition in glasses, that has been studied in the framework of the mode coupling approximation. The Boson peak observed in glasses at low temperature is a remanent of this transition. We finally present some recent results obtained with a new approach where one deeply uses some hidden supersymmetric properties of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. M. Wun and R. F. Loring, J. Chem. Phys 97, 8368 (1992); Y. Wan and R. Stratt, J. Chem. Phys 100, 5123 (1994); A. Cavagna et al., Phys. Rev. Lett. 83, 108 (1999); G. Biroli, R. Monasson, J. Phys. A: Math. Gen. 32, L255 (1999).

    Google Scholar 

  2. M. Mézard, G. Parisi, and A. Zee, Nucl. Phys. B559, 689 (1999),

    Article  ADS  Google Scholar 

  3. M. Mézard and G.Parisi, Phys. Rev. Lett. 82 (1999)747.

    Article  ADS  Google Scholar 

  4. B.Coluzzi, G.Parisi and P.Verrocchio, J. Chem. Phys. 112, 2933 (2000), B.Coluzzi, G.Parisi and P. Verrocchio, Phys. Rev. Lett. 84,306 (2000)

    Google Scholar 

  5. A. Zee and I. Affleck, J. Phys: Condens. Matter 12, 8863 (2000).

    Article  ADS  Google Scholar 

  6. V. Martín-Mayor, M. Mézard, G. Parisi, and P. Verrocchio, “The dynamical structure factor in topologically disordered systems” cond-mat 0008472v1 (unpublished).

    Google Scholar 

  7. V. Martín-Mayor, M. Mézard, G. Parisi, and P. Verrocchio, J. Chem. Phys. 114, 8068 (2001).

    Article  ADS  Google Scholar 

  8. T. S. Grigera et al., cond-mat/0104433 (to be published in Philos. Mag. B).

    Google Scholar 

  9. T. S. Grigera et al., to be published.

    Google Scholar 

  10. T.S. Grigera, V. Martín-Mayor, G. Parisi and P. Verrocchio, preprint condmat/ 0110129.

    Google Scholar 

  11. T.S. Grigera, V. Martín-Mayor, G. Parisi and P. Verrocchio, Phys. Rev. Lett. 87 085502 (2001).

    Article  ADS  Google Scholar 

  12. T.S. Grigera, V. Martín-Mayor, G. Parisi and P. Verrocchio, Phys. Rev. Lett. 87 085502 (2001), T.S. Grigera, V. Martín-Mayor, G. Parisi and P. Verrocchio, cond-mat/0104433 and cond-mat/0301103 (to be published on Nature).

    Google Scholar 

  13. A. Cavagna, I. Giardina, G. Parisi, J. Phys. A 30 (1997) 7021.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Cavagna A, Giardina I and Parisi G 1998 Phys. Rev. B 57 11251. i

    Article  ADS  Google Scholar 

  15. S. Ciliberti, T.S. Grigera, V. Martín-Mayor, G. Parisi and P. Verrocchio,

    Google Scholar 

  16. See Efetof's lectures at thi

    Google Scholar 

  17. W. Götze and L. Sjogren, Rep. Prog. Phys. 55 241 (1992); W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).

    Google Scholar 

  18. G. Parisi J. Phys A 114 (1981) 735, An Introduction to the Statistical Mechanics of Amorphous Systems, in Recent Advances in Field Theory and Statistical Mechanics, edited by J.-B. Zuber and R. Stora (North-Holland, Amsterdam, Netherlands, 1984).

    Google Scholar 

  19. See S.R. Elliot Physics of amorphous materials, Longman (England 1983).

    Google Scholar 

  20. See e.g. J. M. Ziman, Models of disorder, Cambridge University Press, Cambdrige (1979).

    Google Scholar 

  21. T. Keyes, J. Phys. Chem. A 101, 2921 (1997).

    Article  Google Scholar 

  22. A. Cavagna, Europhys. Lett. 53, 490 (2001).

    Google Scholar 

  23. L. Angelani, R. Di Leonardo, G. Ruocco, A. Scala, and F. Sciortino, Phys. Rev. Lett. 85, 5356 (2000), K. Broderix, K. K. Bhattacharya, A. Cavagna, A. Zippelius, and I. Giardina, Phys. Rev. Lett. 85, 5360 (2000), T.S. Grigera, A. Cavagna, I.Giardina and G. Parisi, Phys. Rev. Lett. 88, 055502 (2002).

    Google Scholar 

  24. G. Parisi On the origine of the Boson peak, cond-mat/0301284, Proceeding of the Pisa conference September 2002, to be published on Journal of Physics; condmat/ 030128 Euclidean random matrices, the glass transition and the Boson peak, proceeding of the Messina conference in honour of Gene Stanley, Physica A in press.

    Google Scholar 

  25. A.Cavagna, I.Giardina, G.Parisi, Phys. Rev. Lett. 83, 108 (1999)

    Article  ADS  Google Scholar 

  26. G. Parisi and N. Sourlas, Phys. Rev. Lett. 43 (1979) 744; Nucl. Phys. B 206 (1982) 321. J. Cardy, Phys. Lett. 125B (1983) 470. A. Klein and J. Fernando- Perez, Phys.Lett. 125B (1983) 473.

    Google Scholar 

  27. Parisi G and Sourlas N 1982 Nucl. Phys. B 206, 321.

    Google Scholar 

  28. A Poliakiov, Soviet Phys. JEPT 50, 353 (1970).

    Google Scholar 

  29. A.Migdal, (private comunication).

    Google Scholar 

  30. R. Abou-Chacra, P.W. Anderson, and D.J. Thouless, J. Phys. C 5, 1734 (1973). H. Kunz, J. Physique 44, L411 (1883). E.N. Economou and M.H. Cohen, Phys. Rev. B 5, 2931 (1972). A.D. Mirlin and Y.V. Fyodorov, J. Phys. A: Math. Gen. 24, 2273 (1991). A.D. Mirlin and Y.V. Fyodorov, Nucl. Phys. B 366, 507 (1991).

    Google Scholar 

  31. P. Cizeau and J.P. Bouchaud, Phys. Rev. E 50, 1810 (1994). G.J. Rodgers and A.J. Bray, Phys. Rev. B 37, 3557 (1988). A.J. Bray and G.J. Rodgers, Phys. Rev. B 38, 11461 (1988). G. Biroli and R. Monasson, e-print cond-mat/9902032 (1999).

    Google Scholar 

  32. A. Cavagna, I. Giardina and G. Parisi, Phys. Rev. Lett. 83 108 (1999).

    Article  ADS  Google Scholar 

  33. A. Zee, I. Affleck, J. Phys.: Cond. Matter 12, 8863 (2000);

    Article  ADS  Google Scholar 

  34. Pilla, O. et al., Nature of the Short Wavelength Excitations in Vitreous Silica: An X-Ray Brillouin Scattering Study. Phys. Rev. Lett. 85, 2136–2139 (2000).

    Article  ADS  Google Scholar 

  35. G. Ruocco et al., Phys. Rev. Lett. 84, 5788 (2000).

    Article  ADS  Google Scholar 

  36. J. Horbach et al., J. Phys. Chem. B 103, 4104 (1999).

    Article  Google Scholar 

  37. S.B. Bembenek and S.D. Laird, J. Chem. Phys 104. 5199 (1996)

    Article  ADS  Google Scholar 

  38. W. Schirmacher, G. Diezemann and C. Ganter, Phys. Rev. Lett. 81, 136 (1998)

    Article  ADS  Google Scholar 

  39. M. Montagna et al. Phys. Rev. lett. 83, 3450 (1999).

    Article  ADS  Google Scholar 

  40. V. Martín-Mayor et al., Phys. Rev. E 62, 2373 (2000).

    Article  ADS  Google Scholar 

  41. C.Benoit, E.Royer and G.Poussigue, J. Phys Condens. Matter 4. 3125 (1992), and references therein; C.Benoit, J. Phys Condens. Matter 1. 335 (1989), G.Viliani et al. Phys. Rev. B 52, 3346 (1995). Phys. Rev. E.

    Google Scholar 

  42. P. Turchi, F. Ducastelle and G. Treglia, J. Phys. C 15, 2891 (1982).

    Article  ADS  Google Scholar 

  43. W. Götze and M. R. Mayr, Phys. Rev. E 61, 587 (2000).

    Article  ADS  Google Scholar 

  44. Mézard M, Parisi G and Virasoro M.A., Spin glass theory and beyond", World Scienti.c (1987).

    Google Scholar 

  45. G. Parisi A pedagogical introduction to the replica method for fragile glasses, cond-mat/9905318, Phil. Mag. in press.

    Google Scholar 

  46. Cavagna A, Garrahan J P and Giardina I 1998 J. Phys. A: Math. Gen. 32 711.

    Article  ADS  Google Scholar 

  47. Zinn-Justin J, 1989 Quantum Field Theory and Critical Phenomena, (Clarendon Press, Oxford).

    Google Scholar 

  48. Kurchan J 1991 J. Phys. A: Math. Gen. 24 4969.

    Article  MathSciNet  ADS  Google Scholar 

  49. Kurchan J 2002 Preprint cond-mat/0209399.

    Google Scholar 

  50. For an illuminating discussion of the problem of removing the determinant in the supersymmetric formalism see [48, 49] and [27].

    Google Scholar 

  51. A. Bray and M. Moore, e-print cond-mat/0305620.

    Google Scholar 

  52. C. Becchi, A. Stora and R. Rouet, Commun. Math. Phys. 42 (1975) 127. I.V. Tyutin Lebdev preprint FIAN 39 (1975) unpublished.

    Google Scholar 

  53. A. Cavagna, I. Giardina, G. Parisi and M. Mezard, J. Phys. A 36 (2003) 1175.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  54. D. J. Thouless, P. W. Anderson and R. G. Palmer, Phil. Mag. 35 (1977) 593.

    Article  ADS  Google Scholar 

  55. A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Phys. Rev. B, 68 (2003) 174401; Phys. Rev. Lett. 92, 127203 (2004), Phys. Rev. B 70, 064423 (2004).

    Google Scholar 

  56. A. Crisanti, L. Leuzzi, T. Rizzo, Eur. Phys. J. B, 36 (2003) 129–136; Complexity in Mean-Field Spin-Glass Models: Ising p-spin, cond-mat/0406649.

    Google Scholar 

  57. A. Crisanti, L. Leuzzi, Phys. Rev. B 70, 014409 (2004), The spherical 2 + p spin glass model: an exactly solvable model for glass to spin-glass transition cond-mat/0407129.

    Google Scholar 

  58. A, Annibale, A. Cavagna, I. Giardina, G. Parisi, Phys. Rev. E 68, 061103 (2003); A, Annibale, A. Cavagna, I. Giardina, G. Parisi, Elisa Trevigne J. Phys. A 36, 10937 (2003); A. Cavagna, I. Giardina, G. Parisi,Phys. Rev. Lett. 92, 120603 (2004); A. Annibale, G. Gualdi, A. Cavagna J. Phys. A: Math. Gen. 37 (2004) 11311, A. Cavagna, I. Giardina, G. Parisi, Phys. Rev. B 71 (2005) 024422.

    Google Scholar 

  59. G. Parisi, T. Rizzo On Supersymmetry Breaking in the Computation of the Complexity cond-mat/0401509; Zero-Temperature Limit of the SUSY-breaking Complexity in Diluted Spin-Glass Models cond-mat/0411732

    Google Scholar 

  60. T. Rizzo Tap Complexity, the Cavity Method and Supersymmetry condmat/ 0403261, T. Rizzo On the Complexity of the Bethe Lattice Spin Glass cond-mat/0404729;

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Parisi, G. (2006). EUCLIDEAN RANDOMMATRICES:SOLVEDAND OPEN PROBLEMS. In: Brézin, É., Kazakov, V., Serban, D., Wiegmann, P., Zabrodin, A. (eds) Applications of Random Matrices in Physics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 221. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4531-X_7

Download citation

Publish with us

Policies and ethics