Skip to main content

DETECTION OF NON-PARAMETRIC LINES BY EVIDENCE ACCUMULATION: FINDING BLOOD VESSELS IN MAMMOGRAMS

  • Chapter
Computer Vision and Graphics

Part of the book series: Computational Imaging and Vision ((CIVI,volume 32))

Abstract

The evidence accumulation method for finding objects having shape which can be neither parameterized nor tabularized is proposed. The result is a multi-scale measure of existence of the detected object, in the accumulator congruent with the image domain, supplemented with local information on additional features of the object. The method is implemented for finding blood vessels in mammographic images, visible as bright lines. In this case, information from pairs of pixels is used for accumulation. The accumulation is fuzzy in several ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Aguado, A. S., Nixon, M. S., and Montiel, E. M. (1995). Parameterizing arbitrary shapes via Fourier descriptors for evidence-gathering extraction. Int. J. Comput. Vision, 14:119–130.

    Google Scholar 

  • Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary shapes. PR, 13: 111–122.

    MATH  Google Scholar 

  • Canny, J. (1986). A computational approach to edge detection. IEEE Trans. PAMI, 8(6):679–698.

    Google Scholar 

  • Castan, S., Zhao, J., and Shen, J. (1990). Optimal filter for edge detection. In Proc. 1st European Conf. Computer Vision, pages 13–17, Antibes, France.

    Google Scholar 

  • Duda, R. D. and Hart, P. E. (1972). Use of the Hough transform to detect lines and curves in pictures. Comm. Assoc. of Computing Machinery, 15:11–15.

    Google Scholar 

  • Hough, P. V. C. (1959). In Proc. Int. Conf. on High Energy Accelerators and Instrumentation. CERN.

    Google Scholar 

  • Hough, P. V. C. (1962). A method and means for recognizing complex patterns. U. S. Patent 3.069.654.

    Google Scholar 

  • Illingworth, J. and Kittler, J. (1988). A survey of the Hough transform. Comp. Vision, Graph., and Image Proc., 44(1):87–116.

    Google Scholar 

  • Kimme, C., Ballard, D., and Sklansky, J. (1975). Finding circles by an array of accumulators. Comm. Assoc. of Computing Machinery, 18(2):120–122.

    Google Scholar 

  • Lam, W. C. Y., Lam, M. T. S., Yuen, K. S. Y., and Leung, D. N. K. (1994). A general evidence accumulation technique for Hough transformation. In Proc. IEEE Int. Conf. Systems, Man and Cybernetics, volume 3, pages 2414–2419, Texas, USA.

    Google Scholar 

  • Lam, W. C. Y. and Yuen, S. Y. (1996). Efficient technique for circle detection using hypothesis filtering and Hough transform. IEE Proc.- Vis. Image Signal Process., 143(5):292–300.

    Google Scholar 

  • Leavers, V. F. (1993). Which Hough transform? CVGIP-IU, 58:250–264.

    Google Scholar 

  • Maître, H. (1985). Un panorama de la transformation de Hough. Traitement du Signal, 2(4):305–317.

    MathSciNet  Google Scholar 

  • Merlin, P. M. and Farber, D. J. (1975). A parallel mechanism for detecting curves in pictures. IEEE Trans. Comp., 24:96–98.

    Google Scholar 

  • MIAS (2002). The Mammographic Image Analysis Society database. http://www.wiau.man.ac.uk/services/MIAS/MIASweb.html

    Google Scholar 

  • Reisfeld, D. (1996). The Constrained Phase Congruency Feature Detector: simultaneous localisation, classification and scale determination. PRL, 17(11):1161–1169.

    Google Scholar 

  • Reisfeld, D., Wolfson, H., and Yeshurun, Y. (1995). Context-free attentional operators: the Generalised Symmetry Transform. Int. J. Comput. Vision, 14:119–130.

    Article  Google Scholar 

  • Rosenfeld, A. (1969). Picture Processing by Computer. Academic Press, New York.

    Google Scholar 

  • Strauss, O. (1999). Use the Fuzzy Hough Transform towards reduction of the precision-uncertainty duality. PR, 32:1911–1922.

    Google Scholar 

  • Valverde, F. L., Munoz, J., Nishikawa, R., and Doi, K. (2000). Elimination of calcified false positives in detection of microcalcifications in mammograms using Hough transform. In Proc. 5th Int. Workshop on Digital Mammography IWDM 2000, pages 383–390, Toronto, Canada.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

J Chmielewski, L. (2006). DETECTION OF NON-PARAMETRIC LINES BY EVIDENCE ACCUMULATION: FINDING BLOOD VESSELS IN MAMMOGRAMS. In: Wojciechowski, K., Smolka, B., Palus, H., Kozera, R., Skarbek, W., Noakes, L. (eds) Computer Vision and Graphics. Computational Imaging and Vision, vol 32. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4179-9_54

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4179-9_54

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4178-5

  • Online ISBN: 978-1-4020-4179-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics