Skip to main content

Gas Transport Mechanisms

  • Chapter
Gas Transport in Porous Media

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 20))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abriola, L.M., C.-S. Fen, and H.W. Reeves, 1992, “Numerical simulation of unsteady organic vapor transport in porous media using the dusty gas model,” Subsurface Contamination by Immiscible Fluids, Wyre, ed., Balkema, Rotterdam, pp. 195–202.

    Google Scholar 

  • Abriola, L.M., and G.F. Pinder, 1985, “A multiphase approach to the modeling of porous media contamination by organic compounds, 1. Equation development,” Water Resourc. Res., 21:11–18.

    Google Scholar 

  • Abu-El-Sha’r, W., and L.M. Abriola, 1997, “Experimental assessment of gas transport mechanisms in natural porous media: Parameter evaluation,” Water Resourc. Res., 33:505–516.

    Article  Google Scholar 

  • Altevogt, A.S., D.E. Rolston, and S. Whitaker, 2003a, “New equations for binary gas transport in porous media, Part 1: equation development,” Adv. Water Resources, 26:695–715.

    Article  Google Scholar 

  • Altevogt, A.S., D.E. Rolston, and S. Whitaker, 2003b, “New equations for binary gas transport in porous media, Part 1: experimental validation,” Adv. Water Resources, 26:695–715.

    Article  Google Scholar 

  • Antohe, B.V., and J.L. Lage, 1997, “A general two-equation macroscopic turbulence model for incompressible flow in porous media,” Int. J. Heat Mass Transfer, 40:3013–3024.

    Article  MATH  Google Scholar 

  • Arnost, D. and P. Schneider, 1995, “Dynamic transport of multicomponent mixtures of gases in porous solids,” Chem. Eng. J., 55:91–99.

    Google Scholar 

  • Bear, J., 1979, Hydraulics of Groundwater, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Beavers, G.S., E.M. Sparrow, and D.E. Rodenz, 1973, “Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres,” J. Appl. Mech., 40:655–660.

    Google Scholar 

  • Bird, R.B., W.E. Stewart, and E.N. Lightfoot, 1960, Transport Phenomena, John Wiley & Sons, New York.

    Google Scholar 

  • Carslaw, H.S., and J.C. Jaeger, 1959, Conduction of Heat in Solids, Second Edition, Oxford University Press, London.

    Google Scholar 

  • Chen, O.T., and R.G. Rinker, 1979, “Modification of the Dusty-Gas Equation to predict Mass Transfer in General Porous Media,” Chemical Engineering Science, 34:51–61.

    Article  Google Scholar 

  • Cunningham, R.E., and R.J.J. Williams, 1980, Diffusion in Gases and Porous Media, Plenum Press, New York.

    Google Scholar 

  • Darcy, H.P.G., 1856, “Les Fontaines Publiques de la Ville de Dijon,” Victor Dalmont, Paris.

    Google Scholar 

  • Dullien, F.A.L., 1992, Porous Media: Fluid Transport and Pore Structure, Second Edition, Academic Press, Inc., San Diego.

    Google Scholar 

  • Dupuit, A.J.E.J., 1863, “Etudes Theoriques et Pratiques sur le Mouvement des aux dans les Canaux Decouverts et a Travers les Terrain Permeables,” Victor Dalmont, Paris.

    Google Scholar 

  • Evans, III, R.B., G.M. Watson, and E.A. Mason, 1961, “Gas Diffusion in Porous Media at Uniform Pressure,” J. Chem. Physics, 35:2076–2083.

    Article  Google Scholar 

  • Evans, III, R.B., G.M. Watson, and E.A. Mason, 1962a, “Gas Diffusion in Porous Media. II Effect of Pressure Gradients,” J. Chem. Physics, 36:1894–1902.

    Article  Google Scholar 

  • Evans, III, R.B., G.M. Watson, and J. Truitt, 1962b, “Interdiffusion of gases in a low permeability graphite at uniform pressure,” J. Applied Physics, 33:2682.

    Article  Google Scholar 

  • Evans, III, R.B., G.M. Watson, and J. Truitt, 1963, “Interdiffusion of gases in a low permeability graphite. II. Influence of pressure gradients,” J. Applied Physics, 34:2020.

    Article  Google Scholar 

  • Fen, C.-S., and L.M. Abriola, 2004, “A comparison of mathematical model formulations for organic vapor transport in porous media,” Adv. Water Reources, 27:1005–1016.

    Article  Google Scholar 

  • Feng, C., and W.E. Stewart, 1973, “Practical models for isothermal diffusion and flow of gases in porous solids,” Ind. Eng. Chem. Fundam., 12:143–147.

    Article  Google Scholar 

  • Forchhemer, P., 1901, “Wasserbewegung durch Boden,” Z. Vereines Deutscher Ingenieure, 45:1736–1741 and 1781–1788.

    Google Scholar 

  • Getachew, D., W.J. Minkowycz, and J.L. Lage, 2000, “A modified form of the κ – ϵ model for turbulent flows of an incompressible fluid in porous media,” Int. J. Heat Mass Transfer, 43:2909–2915.

    Article  MATH  Google Scholar 

  • Graham, T., 1833, “On the law of diffusion of gases,” Phil. Mag., 2:175, 269, 351; reprinted in Chemical and Physical Researches, pp. 44–70, Edinburgh Univ. Press, Edinburgh, Scotland, UK, 1876.

    Google Scholar 

  • Graham, T., 1846, “On the motion of gases,” Phil. Trans. Roy. Soc., 136:573; reprinted in Chemical and Physical Researches, pp. 88-161, Edinburgh Univ. Press, Edinburgh, Scotland, UK, 1876.

    Google Scholar 

  • Heid, J.G., J.J. McMahon, R.F. Nielson, and S.T. Yuster, 1950, “Study of the Permeability of Rocks to Homogeneous Fluids,” API Drilling and Production Practice, pp. 230–244.

    Google Scholar 

  • Jackson, R., 1977, Transport in Porous Catalysts, Chem Eng. Monograph 4, Elsevier, New York.

    Google Scholar 

  • Jones, F.O., and W.W. Owens, 1980, “A Laboratory Study of Low-Permeability Gas Sands,” J. Petroleum Techology (September 1980), pp. 1631–1640.

    Google Scholar 

  • Joseph, D.D., D.A. Nield, and Papanicolaou, 1982, “Nonlinear equation governing flow in a saturated porous media,” Water Resources Res., 18:1049–1052 and 19:591.

    Article  Google Scholar 

  • Kaviany, M., 1995, Principles of Heat Transfer in Porous Media, Second Edition, Springer-Verlag New York, Inc., New York. Check 1995 second edition.

    MATH  Google Scholar 

  • Klinkenberg, L.J., 1941, “The Permeability of Porous Media to Liquids and Gases,” API Drilling and Production Practice, pp. 200–213.

    Google Scholar 

  • Lage, J.L., 1998, “The fundamental theory of flow through permeable media: From Darcy to turbulence,” Transport Phenomena in Porous Media, D.B. Ingham and I. Pop, eds., Elsevier, Amsterdam, pp. 1–30.

    Google Scholar 

  • Mason, E.A., R.B. Evans, III, and G.M. Watson, 1963, “Gaseous diffusion in porous media. III. Thermal transpiration,” J. Chem. Phys., 38:1808–1826.

    Article  Google Scholar 

  • Mason, E.A., and A.P. Malinauskas, 1964, “Gaseous diffusion in porous media. IV. Thermal diffusion,” J. Chem. Phys., 41:3815–3819.

    Article  Google Scholar 

  • Mason, E.A., and A.P. Malinauskas, 1983, Gas Transport in Porous Media: The Dusty-Gas Model, Chem Eng. Monograph 17, Elsevier, New York.

    Google Scholar 

  • Masuoka, T., and Y. Takatsu, 1996, “Turbulence model for flow through porous media,” Int. J. Heat Mass Transfer, 39:2803–2809.

    Article  MATH  Google Scholar 

  • Millington, R.J., and J.M. Quirk, 1961, “Permeability of porous solids,” Trans. Faraday Soc., 57:1200–1207.

    Article  Google Scholar 

  • Nield, D.A., and A. Bejan, 1999, Convection in Porous Media, Second Edition, Springer-Verlag New York, Inc., New York.

    MATH  Google Scholar 

  • Oldenburg, C.M., S.W. Webb, K. Pruess, and G.J. Moridis, 2004, “Mixing of Stably Stratified Gases in Subsurface Reservoirs: A Comparison of Diffusion Models,” Transport in Porous Media, 54: 323–334.

    Article  Google Scholar 

  • Pruess, K., 1991, TOUGH2 – A General-Purpose Numerical Simulator for Multiphase Fluid and Heat Flow, LBL-29400, Lawrence Berkeley Laboratory.

    Google Scholar 

  • Reda, D.C., 1987, “Slip-Flow Experiments in Welded Tuff: The Knudsen Diffusion Problem,” Coupled Processes Associated with Nuclear Waste Repositories, C.-F. Tsang, ed., pg. 485–493, Academic Press, Inc., Orlando, 1987.

    Google Scholar 

  • Reid, R.C., J.M. Prausnitz, and B.E. Poling, 1987, The Properties of Gases & Liquids, Fourth Edition, McGraw-Hill, Inc.

    Google Scholar 

  • Shapiro, A.A., 1993, “A kinetic theory of the filtration of rarefied gas in an anisotropic porous medium,” Theoretical Foundations of Chemical Engineering, 27:140–148.

    Google Scholar 

  • Sleep, B.E., 1998, “Modeling transient organic vapor transport in porous media with the dusty gas model,” Advances in Water Resources, 22:247–256.

    Article  Google Scholar 

  • Thorstenson, D.C., and D.W. Pollock, 1989a, “Gas Transport in Unsaturated Zones: Multicomponent Systems and the Adequacy of Fick’s Laws,” Water Resourc. Res., 25:477–507.

    Google Scholar 

  • Thorstenson, D.C., and D.W. Pollock, 1989b, “Gas Transport in Unsaturated Porous Media: The Adequacy of Fick’s Law,” Reviews of Geophysics, 27:61–78.

    Google Scholar 

  • Vafai, K., and C.L. Tien, 1981, “Boundary and inertia effects on flow and heat transfer in porous media,” Int. J. Heat Mass Trans., 24:195–203.

    Article  MATH  Google Scholar 

  • Veldsink, J.W., R.M.J. van Damme, G.F. Versteeg, and W.P.M. van Swaaji, 1995, “The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media,” The Chemical Engineering Journal, 57:115–125.

    Google Scholar 

  • Ward, J.C., 1964, “Turbulent flow in porous media,” ASCE J. Hydraulic Div., 90 (HY5):1–12.

    Google Scholar 

  • Webb, S.W., 1998, “Gas Diffusion in Porous Media – Evaluation of an Advective-Dispersive Formulation and the Dusty-Gas Model for Binary Mixtures,” J. Porous Media, 1:187–199.

    MATH  Google Scholar 

  • Webb, S.W. and K. Pruess, 2003, “The Use of Fick’s Law for Modeling Trace Gas Diffusion in Porous Media,” Transport in Porous Media, 51:327–341.

    Article  Google Scholar 

  • Xiao, J., and J. Wei, 1992a, “Diffusion Mechanism of Hydrocarbons in Zeolites – I. Theory,” Chem. Eng. Sci., 47:1123–1141.

    Article  Google Scholar 

  • Xiao, J., and J. Wei, 1992b, “Diffusion Mechanism of Hydrocarbons in Zeolites – II. Analysis of Experimental Observations,” Chem. Eng. Sci., 47:1143–1159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Webb, S.W. (2006). Gas Transport Mechanisms. In: Ho, C.K., Webb, S.W. (eds) Gas Transport in Porous Media. Theory and Applications of Transport in Porous Media, vol 20. Springer, Dordrecht . https://doi.org/10.1007/1-4020-3962-X_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3962-X_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3961-4

  • Online ISBN: 978-1-4020-3962-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics