Skip to main content

Influence of the Hydrogen Concentration on H Bonding in Zinc Oxide

  • Conference paper
Zinc Oxide — A Material for Micro- and Optoelectronic Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 194))

Abstract

Despite of the recent developments the properties of hydrogen in ZnO are not fully understood. While in some ZnO single crystals the amount of H detected by gas effusion experiments is similar in concentration to the number of free electrons, a large number of samples exhibits much higher H concentrations. Raman backscattering experiments reveal that a significant amount of H is accommodated at sites that do not give rise to enhanced conductivity; a large amount of H is bound to carbon and nitrogen impurities forming C-HX and N-H complexes. Depending on the method of the sample preparation H concentrations as high as 3.0×1021 cm−3 have been observed. To gain further insight into the properties of H in ZnO data obtained from H effusion measurements of single crystal and sputter deposited ZnO have been analyzed to deduce the hydrogen binding energy as a function of the H chemical potential. In samples with a low H content six peaks were observed in the H density-of-states distribution. With increasing H concentration the peaks broaden. In addition, an increase of the H concentration results in a pronounced increase of the average H binding energy. This observation indicates that the properties of H expand well beyond the formation of donors and the neutralization of impurities and deep defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).

    Article  ADS  Google Scholar 

  2. S. F. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord, J. M. Gil, H. V. Alberto, R. C. Vilão, J. Pironto Duarte, N. Ares de Campos, A. Weidinger, R. L. Lichti, and S. J. C. Irving, Phys. Rev. Lett. 86, 2601 (2001).

    Article  ADS  Google Scholar 

  3. D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, and P. G. Baranov, Phys. Rev. Lett. 88, 045504 (2002).

    Article  ADS  Google Scholar 

  4. B. K. Meyer, H. Alves. D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, phys. stat. sol (b) 241, 231 (2004), and references therein.

    Article  ADS  Google Scholar 

  5. N. Y. Garces, N. C. Giles, L. E. Halliburton, G. Cantwell, D. B. Eason, D. C. Reynolds, and D. C. Look, Appl. Phys. Lett. 80, 1334 (2002).

    Article  ADS  Google Scholar 

  6. D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).

    Article  ADS  Google Scholar 

  7. M. D. McCluskey, S. J. Jokela, K. K. Zhuravlev, P. J. Simpson, and K. G. Lynn, Appl. Phys. Lett. 81, 3807 (2002).

    Article  ADS  Google Scholar 

  8. E. V. Lavrov, J. Weber, F. Börrnert, C. G. Van de Walle, R. Helbig, Phys. Rev. B 66, 165205 (2002).

    Article  ADS  Google Scholar 

  9. S.-Y. Lin, J. Appl. Phys. 80, 1399 (1996), and references therein.

    Article  ADS  Google Scholar 

  10. D. M. Joseph, R. Balagopal, R. F. Hicks, L. P. Sadwick, and K. L. Wang, Appl. Phys. Lett. 53, 2203 (1988).

    Article  ADS  Google Scholar 

  11. M. O. Manasreh, J. M. Baranowski, K. Pakula, H. X. Jiang, and J. Lin, Appl. Phys. Lett. 75, 659 (1999).

    Article  ADS  Google Scholar 

  12. C. G. Van de Walle, presentation at the MRS Spring Meeting in San Francisco 2004.

    Google Scholar 

  13. J. W. Bozzelli and R. B. Barat, Plasma Chem. Plasma Proc. 8, 293 (1983).

    Article  Google Scholar 

  14. S. Roychowdhury, U. K. Roychowdhury, and M. Venugopalan, Plasma Chem. Plasma Proc. 2, 157 (1982).

    Article  Google Scholar 

  15. W. Beyer, in Hydrogen in Semiconductors II; Vol. 61, edited by N. H. Nickel (Academic Press, San Diego, 1999), p. 165.

    Chapter  Google Scholar 

  16. W. B. Jackson, A. J. Franz, H.-C. Jin, J. R. Abelson, and J. L. Gland, J. Non-Cryst. Sol. 227-230, 143 (1998).

    Article  ADS  Google Scholar 

  17. Hydrogen in Semiconductors II, edited by N. H. Nickel (Academic Press, San Diego, 1999), Vol. 61. p. 165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Nickel, N.H. (2005). Influence of the Hydrogen Concentration on H Bonding in Zinc Oxide. In: Nickel, N.H., Terukov, E. (eds) Zinc Oxide — A Material for Micro- and Optoelectronic Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 194. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3475-X_13

Download citation

Publish with us

Policies and ethics