Skip to main content

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

In this chapter, we consider a Kotz-type distribution (of a p-variate random vector X) which has fatter tail regions than that of multivariate normal distribution, and its probability density function (pdf) is given by

$$ f(x,\mu ,\Sigma ) = c_p \left| \Sigma \right|^{ - \tfrac{1} {2}} \exp \{ - [(x - \mu )'\Sigma ^{ - 1} (x - \mu )]^{\tfrac{1} {2}} \} , $$

where μ∈ℜp, Σ is a positive definite matrix and \( c_p = \tfrac{{\Gamma (\tfrac{p} {2})}} {{2\pi ^{\tfrac{p} {2}} \Gamma (p)}} \). We review various characteristics and provide a simulation algorithm to simulate samples from this distribution. Estimation of the parameters using the maximum likelihood method is discussed. An interesting fact is that the maximum likelihood estimators under this distribution are the generalized spatial median (GSM) estimators as defined by (1988). Using the asymptotic distribution of the estimates, statistical inferences on the parameters of the distribution are illustrated with an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baringhaus, L., and Henze, N. (1992). Limit distributions for Mardia’s measure of multivariate skewness, Annals of Statistics, 20, 1889–1902.

    MATH  MathSciNet  Google Scholar 

  2. Brown, B. M. (1983). Statistical use of the spatial median, Journal of the Royal Statistical Society, Series B, 45, 25–30.

    MATH  Google Scholar 

  3. Devroye, L. (1986). Non-Uniform Random Variate Generation, Springer-Verlag, New York.

    MATH  Google Scholar 

  4. Ducharme, G. R., and Milasevic, P. (1987). Spatial median and directional data. Biometrika, 74, 212–215.

    Article  MATH  MathSciNet  Google Scholar 

  5. Fang, K. T., and Anderson, T. W. (1990). Statistical Inference in Elliptically Contoured and Related Distributions, Allerton Press, New York.

    MATH  Google Scholar 

  6. Fang, K. T. and Kotz, S., and Ng, K. W. (1990). Symmetric Multivariate and Related Distributions Chapman and Hall, London.

    MATH  Google Scholar 

  7. Gómez, E. Gómez-Villegas, M. A., and Marín, J.M. (1998). A multivariate generalization of the power exponential family of distributions, Communications in Statistics—Theory and Methods, 27, 589–600.

    Article  MATH  MathSciNet  Google Scholar 

  8. Gower, J. S. (1974). The mediancentre, Applied Statistics, 23, 466–470.

    Article  Google Scholar 

  9. Haldane, J. B. S. (1948). Note on the median of a multivariate distribution, Biometrika, 35, 414–415.

    MATH  MathSciNet  Google Scholar 

  10. Henze, N. (1994). On Mardia’s kurtosis test for multivariate normality, Communications in Statistics—Theory and Methods, 23, 1031–1045.

    Article  MATH  MathSciNet  Google Scholar 

  11. Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions, In Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 221–233, University of California Press, Berkeley, CA.

    Google Scholar 

  12. Huber, P. J. (1981). Robust Statistics, John Wiley_& Sons, New York.

    MATH  Google Scholar 

  13. Johnson, R. A., and Wichern, D. W. (1998). Applied Multivariate Statistical Analysis, Prentice Hall, New Jersey.

    Google Scholar 

  14. Kano, Y. (1994). Consistency property of elliptical probability density functions, Journal of Multivariate Analysis, 51, 139–147.

    Article  MATH  MathSciNet  Google Scholar 

  15. Kariya, T. K., and Sinha, B. K. (1989). Robustness of Statistical Tests, Academic Press, San Diego, CA.

    MATH  Google Scholar 

  16. Khattree, R., and Naik, D. N. (1999). Applied Multivariate Statistics with SAS Software, John Wiley_& Sons and SAS Institute, New York.

    Google Scholar 

  17. Kotz, S. (1975). Multivariate distributions at a cross-road, In Statistical Distributions in Scientific Work (Eds., G. P. Patil, S. Kotz, and J. K. Ord), pp. 247–270, D. Reidel, The Netherlands.

    Google Scholar 

  18. Kotz, S., Kozubowski, T. J., and Podgórski, K. (2001). The Laplace Distribution and Generalizations, Birkhäuser, Boston.

    MATH  Google Scholar 

  19. Koutras, M. (1986). On the generalized noncentral chi-squared distribution induced by an elliptical gamma law, Biometrika, 73, 528–532.

    Article  MathSciNet  Google Scholar 

  20. Lange, K. L., Little, R. J. A., and Taylor, J. M. G. (1989). Robust statistical modeling using the t distribution, Journal of the American Statistical Association, 84, 881–896.

    Article  MathSciNet  Google Scholar 

  21. Lindsey, J. K. (1999). Multivariate elliptically contoured distributions for repeated measurements, Biometrics, 55, 1277–1280.

    Article  MATH  Google Scholar 

  22. Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications, Biometrika, 57, 519–530.

    Article  MATH  MathSciNet  Google Scholar 

  23. Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory, John Wiley_& Sons, New York.

    MATH  Google Scholar 

  24. Nadarajah, S. (2003). The Kotz-type distribution with applications, Statistics, 37, 341–358.

    MATH  MathSciNet  Google Scholar 

  25. Naik, D. N. (1993). Multivariate medians: A review In Probability and Statistics (Eds., S. K. Basu and B. K. Sinha), pp. 80–90, Narosa Publishing House, New Delhi.

    Google Scholar 

  26. Naik, D., Khattree, R., and Shults, J. (2002). A note on likelihood based inference for AR(1) and MA(1) processes under certain robust alternatives to multivariate normality, Journal of Statistical Theory and Applications, 1, 57–62.

    MathSciNet  Google Scholar 

  27. Naik, D. N., and Patwardhan, G. R. (1991). A Note on testing for correlation in a certain bivariate distribution, Journal of Quantitative Economics, 7, 295–302.

    Google Scholar 

  28. Plungpongpun, K. (2003). Analysis of multivariate data using Kotz type distribution, Ph.D. Thesis, Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA.

    Google Scholar 

  29. Rao, C. R. (1988). Methodology based on the L 1-norm in statistical inference, Sankhyā, Series A 50, 289–313.

    MATH  Google Scholar 

  30. Simoni, S. de (1968) Su una estensione dello schema delle curve normali di ordina r alle variabili doppie Statistica (Bologna), 28, 151–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Naik, D.N., Plungpongpun, K. (2006). A Kotz-Type Distribution for Multivariate Statistical Inference. In: Balakrishnan, N., Sarabia, J.M., Castillo, E. (eds) Advances in Distribution Theory, Order Statistics, and Inference. Statistics for Industry and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4487-3_7

Download citation

Publish with us

Policies and ethics