Skip to main content

Lactic Acidosis and Hyperlactatemia

  • Conference paper

Abstract

Traditionally, hyperlactatemia in critically ill patients and particularly those in shock was interpreted as a marker of secondary anaerobic metabolism due to inadequate oxygen supply inducing cellular distress [1]. Many arguments have since refuted this view [2]. With lactate metabolism being extensively described in classical biochemistry manuals, this chapter will focus only on those aspects as they relate to critically ill patients. Distinction between lactic acidosis, metabolic acidosis with hyperlactatemia, and isolated hyperlactatemia will also be addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mizock BA, Falk JL (1992) Lactic acidosis in critical illness. Crit Care Med 20:80–93

    Article  PubMed  CAS  Google Scholar 

  2. Gladden LB (2004) Lactate metabolism-a new paradigm for the third millennium. J Physiol 558:5–30

    Article  PubMed  CAS  Google Scholar 

  3. Cohen RD, Simpson R (1975) Lactate metabolism. Anesthesiology 43:661–673

    PubMed  CAS  Google Scholar 

  4. Alberti KG (1977) The biochemical consequences of hypoxia. J Clin Pathol Suppl (R Coll Pathol) 11:14–20

    CAS  Google Scholar 

  5. Leverve XM (1999) From tissue perfusion to metabolic marker: assessing organ competition and co-operation in critically ill patients? Intensive Care Med 25:890–892

    Article  PubMed  CAS  Google Scholar 

  6. Levy B, Sadoune LO, Gelot AM, Bollaert PE, Nabet P, Larcan A (2000) Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med 28:114–119

    Article  PubMed  CAS  Google Scholar 

  7. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  8. Gilbert EM, Haupt MT, Mandanas RY, Huaringa AJ, Carlson RW (1986) The effect of fluid loading, blood transfusion, and catecholamine infusion on oxygen delivery and consumption in patients with sepsis. Am Rev Respir Dis 134:873–878

    PubMed  CAS  Google Scholar 

  9. Boekstegers P, Weidenhofer S, Kapsner T, Werdan K (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 22:640–650

    Article  PubMed  CAS  Google Scholar 

  10. Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267:1503–1510

    Article  PubMed  CAS  Google Scholar 

  11. Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Misbin RI (1983) Treatment of lactic acidosis with dichloroacetate. N Engl J Med 309:390–396

    Article  PubMed  CAS  Google Scholar 

  12. De Backer D, Creteur J, Silva E, Vincent JL (2001) The hepatosplanchnic area is not a common source of lactate in patients with severe sepsis. Crit Care Med 29:256–261

    Article  PubMed  Google Scholar 

  13. Iscra F, Gullo A, Biolo G (2002) Bench-to-bedside review: lactate and the lung. Crit Care 6:327–329

    Article  PubMed  Google Scholar 

  14. Zeller WP, The SM, Sweet M, et al (1991) Altered glucose transporter mRNA abundance in a rat model of endotoxic shock. Biochem Biophys Res Commun 176:535–540

    Article  PubMed  CAS  Google Scholar 

  15. Gore DC, Jahoor F, Hibbert JM, DeMaria EJ (1996) Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg 224:97–102

    Article  PubMed  CAS  Google Scholar 

  16. Vary TC (1996) Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock 6:89–94

    Article  PubMed  CAS  Google Scholar 

  17. Lynch RM, Paul RJ (1987) Compartmentation of carbohydrate metabolism in vascular smooth muscle. Am J Physiol 252:C328–334

    PubMed  CAS  Google Scholar 

  18. Barron JT, Gu L, Parrillo JE (2000) NADH/NAD redox state of cytoplasmic glycolytic compartments in vascular smooth muscle. Am J Physiol Heart Circ Physiol 279:H2872–2878

    PubMed  CAS  Google Scholar 

  19. James JH, Wagner KR, King JK, et al (1999) Stimulation of both aerobic glycolysis and Na (+)-K (+)-ATPase activity in skeletal muscle by epinephrine or amylin. Am J Physiol 277:E176–186

    PubMed  CAS  Google Scholar 

  20. James JH, Fang CH, Schrantz SJ, Hasselgren PO, Paul RJ, Fischer JE (1996) Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. J Clin Invest 98:2388–2397

    Article  PubMed  CAS  Google Scholar 

  21. Clausen T, Flatman JA (1980) Beta 2-adrenoceptors mediate the stimulating effect of adrenaline on active electrogenic Na-K-transport in rat soleus muscle. Br J Pharmacol 68:749–755

    PubMed  CAS  Google Scholar 

  22. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365:871–875

    Article  PubMed  CAS  Google Scholar 

  23. Leverve XM, Mustafa I (2002) Lactate: A key metabolite in the intercellular metabolic interplay. Crit Care 6:284–285

    Article  PubMed  Google Scholar 

  24. Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69:423–426

    Article  PubMed  CAS  Google Scholar 

  25. Kline JA, Thornton LR, Lopaschuk GD, Barbee RW, Watts JA (2000) Lactate improves cardiac efficiency after hemorrhagic shock. Shock 14:215–221

    PubMed  CAS  Google Scholar 

  26. Levraut J, Ciebiera JP, Chave S, et al (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 157:1021–1026

    PubMed  CAS  Google Scholar 

  27. Stacpoole PW, Nagaraja NV, Hutson AD (2003) Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol 43:683–691

    PubMed  CAS  Google Scholar 

  28. McCarter FD, James JH, Luchette FA, et al (2001) Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage. J Surg Res 99:235–244

    Article  PubMed  CAS  Google Scholar 

  29. Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1444–1461

    PubMed  CAS  Google Scholar 

  30. Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 171:221–226

    Article  PubMed  CAS  Google Scholar 

  31. Manikis P, Jankowski S, Zhang H, Kahn RJ, Vincent JL (1995) Correlation of serial blood lactate levels to organ failure and mortality after trauma. Am J Emerg Med 13:619–622

    Article  PubMed  CAS  Google Scholar 

  32. Bellomo R, Ronco C (1999) The pathogenesis of lactic acidosis in sepsis. Curr Opin Crit Care 5:452–457

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media Inc.

About this paper

Cite this paper

Levy, B. (2006). Lactic Acidosis and Hyperlactatemia. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/0-387-35096-9_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-35096-9_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-30156-3

  • Online ISBN: 978-0-387-35096-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics