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Abstract 
In 1986 Fiat and Shamir exhibited zero-knowledge based identification and digital Signa- 

ture schemes which require only 10 to 30 modular multiplications per party. In this paper we 
describe an improvement of this scheme which reduces the verifier’s complexity to less than 2 
modular multiplications and leaves the prover’s complexity unchanged. 

The new variant is particularly useful when a central computer has to verify in real time 
signed messages from thousands of remote terminals, or when the same signature has to be 
repeatedly verified. 

1. Introduction. 
Informally speaking, a digital signature is a value associated with a message which is easy 

to verify but difficult to forge. After having generated and verified it, the signature can be later 
presented to a judge since the signer cannot disown his messages. An identification scheme k a 
simplified signature scheme in which there are no messages disputes or judges: the proof of 
identity is interactive, and the veriiier can either accept or reject the prover’s claimed identity, 
with no legal or long-term consequences. To be useful and secure, the identification scheme 
should satisfy the following three conditions: 
1) A real verifier should accept a real prover’s proof of identity with overwhelming probabil- 

ity. 
2) A real verifier should accept a cheating prover’s proof of identity with negligible probabil- 

ity. 
3) A cheating verifier should not learn anything from polynomially many interactions with a 

real prover that will enable him to misrepresent himself as the prover to someone else 
with non-negligible probability. 

The best known example of a signature scheme is the RSA (Rivest, Shamir and Adle- 
man[l9781). To use it as an identification scheme, the veriiier can simply ask the prover to sign 
a random test message. The original scheme requires about 750 modular multiplications per 
party, but the verilier’s complexity can be reduced to a few modular multiplications by using a 
low-exponent variant. A 512 bit implementation of the RSA scheme requires 10-15 seconds on 
IBM PC’s, and several minutes on smart cards. 

A faster and provably secure identification and signature scheme was proposed in Fiat and 
Shamir[19861. It is based on the zero knowledge paradigm introduced in Goldwasser Micali and 
Rackoffl19851, and more particularly on the quadratic residuosity protocol presented by Fischer 
M i d i  and Rackoff at Eurocrypt 84. The Fiat-Shamir protocol reduces the time and communi- 
cation complexities of the Fischer-Micali-Rackoff protocol by simultaneously proving the qua- 
dratic residuosity of many numbers, but by doing so it destroys the zero knowledge nature of 
the protocol. (The formal proof of security of the Fiat-Shamir protocol is thus based on the fact 
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that it reveals no “transferable knowledge”. which is a new measure of cryptographic szrength 
introduced and studied in Feige, Fiat and Shamir[1987].) 

In this paper we show how to substantially speed up the Fiat and Shamir scheme. There 
are many variants of this scheme. Our ideas speed up each single one of them. Thus below we 
c o n h e  ourselves to recall and speed up its simplest version. 

2. The original Fiat-Shamir Scheme 
Let s be a security parameter and let n be the product of two random prime numbers 

whose size is s. (Unlike the RSA scheme, it is not necessary to know the factorization of n in 
order to execute the protocol, and thus each prover can pick his own public modulus n ,  or use 
a universal modulus n published by a trusted center.) 

Each prover picks a secret key consisting of k random numbers s l ,  . . . , s t  in Z: (the 
multiplicative group mod n). computes vi= l/s: (mod n) for j= I, ..., k, and publishes v I .  .... vk 
(along with n,  if it was chosen by him) in a public key directory. 

1) 
2) 

3) 

4) 

In practice. we would accept the probability of successful misrepresentation to be at most 1 in a 
million per each attempt and thus a choice of k= 20 suffices for most applications. The key size 
(either public or private) in 512-bit implementations is about 1.3 kilobytes, and the average 
number of modular multiplications per party is about 10. The communication complexity is 
about 1000 bits per proof. but this can be almost halfed by sending a hashed version of x to 
the verifier. Other optimizations and tradeoffs can be found in Fiat and Shamk[1986]. 

The identification scheme is based on the following protocol: 
The prover picks a random r in Z:, and sends x = r 2  (mod n) to the verifier. 
The verifier sends k random bits e l ,  ..., ek to the prover. 

The prover sends y = r m ?  (mod n) to the verifier. 

The verifier accepts the proof iff x=y211v,cj (mod n). 
I 

J 

To turn this interactive identification scheme into a non interactive signature scheme, it suffices 
to make e = e l ,  . . . , ek  to be the value of a pseudo-random function f, easy to evaluate, but 
hard to invert, at input (xm). where m is the message to be signed. This pseudo random 
function f is universal. and its values are accessible to all the parties. The resultant signature 
generation protocol is: 

1) Choose at random r in [0, ..., n) 

2) Compute e = f (r2(rnod n )  , m )  and y = r-ns,gi. 
i 

3) Send e and y as the signature of m .  

The corresponding signature verification scheme is: 

Accept the signature if syntax errorjle -, between lines 234 and 234 e = f (y2n. 

The scheme is provably secure when f is a truly random function (computed by a trusted 
call-up center) or when f is a strong pseudo-random function in the of Goldreich, 
Goldwasser and Micali [GGM] given to the parties in tamper-proof devices: unless factoring is 
easy, a cheater cannot forge the signature of a new message with non-negligible probability 
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even after he was given polynomially many signatures of other messages and polporn id ly  
many values of f at arguments of his choice. This sketched ( but formalizable) proof breaks 
down for technical reasons when the parties are given access to the algorithm o f f  (and not just 
to its values). However, we strongly believe that the scheme remains secure even in this case, 
provided that f does not  interact badly with the modular multiplication operations. 

Since a cheater can know in advance whether a proposed signature is valid. the value of k 
in practical implementations should be  at least 64. This increases the key size to about 4 kilo- 
bytes, and increases the number of modular multiplications to about 32 per party. The  size of a 
signature is 576 bits, about  the same as in the RSA scheme. 

3. The New Improvement 
Our improvement comes about from choosing the vi's to be the first k prime numbers 

( v I = 2 , v ~ 3 , v 3 = 5 ,  etc). T h e  si's will then be set to be a random square root of the correspond- 
ing vi mod n. Each prover should choose his own modulus n and use its factorization in order 
to extract these roots. (The factorization is now no longer needed and it can be erased.) The 
actual proofs of identity and signatures are generated and verified in the standard way described 
in the previous section. 

Newly arising difficulties 
Before analyzing the efficiency of this scheme, it should be noticed that we have to over- 

come some technical difficulties. In fact, not all of the vi's will be quadratic residues mod n. We 
overcome this technical difficulty with an appropriate perturbation technique which will be 
described in the full version of the paper. 

Gain in efficiency 
The above additional difficulties are worth dealing with. Since our choice of the v,'S is 

universal. provers should only publish n as their public key. This reduces the size of the public 
key directory to 64 bytes per user, and makes it possible to use the same directory in order to 
verify our new signatures, as well as other signatures based on factoring, like the previous 
Fiat-Sharnir, the RSA and the Rabin's scheme. The size of the secret key remains about 4 kilo- 
bytes, but this size is less critical since the information is stored LOCALLY rather than 
TRANSMITTED, and each user keeps only one such file. 

The main benefit of our improvement, though, is the GREATLY reduced complexity of  
verification: since most of the v,'s are single-byte numbers, their product is particularly easy to 
compute as does not  even require modular reductions! The only expensive operation left is the 
modular squaring of y. and thus the total complexity of verification is somewhere between 1 
and 2 modular multiplications. 

Security 
The security of the original Fiat-Shamir scheme is based on the fact that the extraction of 

square roots of random vj  values is as difficult as the factorization of the modulus. This proof 
technique is not directly applicable to the new version, since the extraction of square roots of 
small primes may concievably be easier than the extraction of square roots of random numbers. 

For simplicitly sake, let us  discuss only the security of the identification scheme ( the sig- 
nature scheme only needs a more complex notation), The identification scheme in question is 
based on on zero-knowledge proofs. Very roughly (see Feige, Fiat and Shamir for a detailed 
discussion) th i s  means that the proof of identity is constituted by a proof of "knowledge of 
something." n our  case this "something" is not a proof of quadratic residuosity (either for a par- 
ticular prime or for all  the  primes) in the original language-theoretic sense of Goldwasser Micali 
and Rackoff: Since the parties execute only one round of the protocol, the prover can succeed 
with probability 1/2 even if all the primes are quadratic non-residues! Similarly, the protocol is 
not a proof of knowledge of square roots (either for a particuh prime or for all the primes) as 
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in Feige Fiat and Shamir: The knowledge tape could contain the square roots of a l l  the 400 
pairwise products of the primes, and thus a cheating prover could convince the verifier with 
probability 1/2 without actually knowing even one of the original roots. 

A CAREFUL analysis. carefully omitted in this abstract!, shows that, in our scheme, this 
"something" is the square root of the product of a subset times the inverse of another subset of 
the fist 20 primes. We thus need to argue that this piece of knowledge is not easily available 
to everyone, and thus distinguishes the prover from everyone else. We already know that 
extracting square roots modulo composite numbers is as hard as integer factorization. This 
implies the following fact: 

Assume there exists an algorithm A that, on input m (a s-bit long modulus) and S (a ran- 
dom set of quadratic residues mod m whose cardinality is k), finds a square root of the 
product of a subset of S and the inverse of another subset of S in time T(s). Then, there 
exists a factoring algorithm A' that runs essentially in time 2' .T(s) .  

The proof of this fact, though not hard, is also postponed to the final paper. One would be 
tempted to conclude that if the "piece of knowledge" underlying our new scheme were comput- 
able in time T(s), then one could factor in one million T(s) steps an s-bit modulus, which 
would imply. as we need. that T(s) is large. This is, however, a too hasty conclusion. In fact, 
we can assume without loss of generality that the 6rst 20 primes are quadratic residues (since 
our true scheme cops with those which are not to squares mod n), but they are NOT a random 
subset of size 20. Thus a natural question arises: is the computational difficulty of extracting 
square roots of small primes any lower than for random (quadratic) residues? The answer 
apperas to be negative. In fact, Morrison-Brillhart type methods would be substantially sped up 
if square root of small primes were easier to compute! This and other details (including a for- 
mal intractability assumption) needed to transform this discussion into a proof will be given in 
the final paper. 

Let us mention that there is a more direct way to prove the security of our scheme if one 
is willing to make an intractability assumption that is stronger than the one derivable by formal- 
izing the above argument. Informally, this stronger assumption states that factoring remains 
difficult even when one is given the square root of a small number of small primes. 

It is worth mentioning that while such an assumption is sufficient to prove the security of 
the new scheme, its being false DOES NOT imply that our scheme is insecure! In fact, even if 
a cheating verifier knows how to factor n by using the square roots of a small number of small 
primes, he is unlikely to get hold of these square roots since the schemes are the parallel ver- 
sions of zero knowledge protocols. In other words, only the real prover is likely to benefit from 
such a number-theoretic breakthrough, but he already knows this factorization! 

Remark 

authors. Additional optimization ideas will be described in the full version of this paper. 
This improvement of the Fiat-Shamir scheme was discovered independently by the two 
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