Skip to main content

As elements circulate in the biosphere, mixtures arise when two or more sources contribute materials. Isotopes are excellent tracers for mixing processes and indicate which sources dominate the mixtures. This chapter considers isotope mixing in ecological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Section 5.1

  • Anderson, W.T. and J.W. Fourqurean. 2003. Intra- and interannual variability in seagrass carbon and nitrogen stable isotopes from south Florida, a preliminary study. Organic Geochemistry 34:185-194.

    Article  CAS  Google Scholar 

  • Currin, C.A., S.C. Wainright, K.W. Able, M.P. Weinstein, and C.M. Fuller. 2003. Determination of food web support and trophic position of the mummichog, Fundulus heteroclitus, in New Jersey smooth cordgrass (Spartina alterniflora), common reed (Phragmites australis), and restored salt marshes. Estuaries 26:495-510.

    Article  Google Scholar 

  • Day, J.H. 1967. The biology of Knysna estuary, South Africa. In G.H. Lauff (ed.), Estuaries. American Association for the Advancement of Science (AAAS), pp. 397-407. Washington, D.C.

    Google Scholar 

  • Estep, M.F. and H. Dabrowski. 1980. Tracing food webs with stable hydrogen isotopes. Science 209:1537-1538.

    Article  CAS  PubMed  Google Scholar 

  • Finlay, J.C., S. Khandwala, and M.E. Power. 2002. Spatial scales of carbon flow in a river food web. Ecology 83:1845-1859.

    Article  Google Scholar 

  • Fourqurean, J.W., S.P. Escorcia, W.T. Anderson, and J.C. Zieman. 2005. Spatial and seasonal variability in elemental content, δ13C and δ15N of Thalassia testudinum from South Florida and its implications for ecosystem studies. Estuaries 28:447-461.

    Article  CAS  Google Scholar 

  • Fry, B. 1981. Tracing shrimp migrations and diets using natural variations in stable isotopes. Ph.D. dissertation, University of Texas.

    Google Scholar 

  • Fry, B. 1984. 13C/12C ratios and the trophic importance of algae in Florida Syringodium seagrass meadows. Marine Biology 75:11-19.

    Article  Google Scholar 

  • Fry, B. 1988. Food web structure on Georges Bank from stable C, N and S isotopic compositions. Limnology and Oceanography 33:1182-1190.

    Article  CAS  Google Scholar 

  • Fry, B. and P.L. Parker. 1979. Animal diet in Texas seagrass meadows: δ13C evidence for the importance of benthic plants. Estuarine and Coastal Marine Science 8:499-509.

    Article  CAS  Google Scholar 

  • Fry, B. and E. Sherr. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27:13-47.

    CAS  Google Scholar 

  • Fry, B., S.A. Macko, and J.C. Zieman. 1987. Review of stable isotopic investigations of food webs in seagrass meadows. Florida Marine Research Publications 42:189-209.

    Google Scholar 

  • Fry, B., R.S. Scalan, and P.L. Parker. 1977. Stable carbon isotope evidence for two sources of organic matter in coastal sediments: Seagrasses and plankton. Geochimica et Cosmochimica Acta 41:1875-1877.

    Article  CAS  Google Scholar 

  • Gearing, J.N. 1991. The study of diet and trophic relationships through natural abundance 13C. In D.C. Coleman and B. Fry (eds.), Carbon Isotope Techniques. Academic, San Diego, CA, pp. 201-218.

    Chapter  Google Scholar 

  • Grey, J., S.J. Thackeray, R.I. Jones, and A. Shine. 2002. Ferox trout (Salmo trutta) as “Russian dolls”: Complementary gut content and stable isotope analyses of the Loch Ness foodweb. Freshwater Biology 47:1235-1243.

    Article  Google Scholar 

  • Harrigan, P., J.C. Zieman, and S.A. Macko. 1989. The base of nutritional support for the gray snapper (Lutjanus griseus): an evaluation based on a combined stomach content and stable isotope analysis. Bulletin of Marine Science 44:65-77.

    Google Scholar 

  • Hyndes, G.A. and P.S. Lavery. 2003. Seagrass litter: Trash or treasure. Gulf of Mexico Science 21:111.

    Google Scholar 

  • Kitting, C.L., B. Fry, and M.L. Morgan. 1984. Detection of inconspicuous epiphytic algae supporting food webs in seagrass meadows. Oecologia (Berlin) 62:145-149.

    Article  Google Scholar 

  • Lepoint, G., P. Dauby, and S. Gobert. 2004. Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystems. Marine Pollution Bulletin 49:887-891.

    Article  CAS  PubMed  Google Scholar 

  • Loneragan, N.R., S.E. Bunn, and D.M. Kellaway. 1997. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stableisotope study. Marine Biology 130:289-300.

    Article  Google Scholar 

  • McCutchan, J.H. Jr. and W.M. Lewis Jr. 2002. Relative importance of carbon sources for macroinvertebrates in a Rocky Mountain stream. Limnology and Oceanography 47: 742-752.

    Article  Google Scholar 

  • Melville, A.J. and R.M. Connolly. 2003. Spatial analysis of stable isotope data to determine primary sources of nutrition for fish. Oecologia 136:499-507.

    Article  PubMed  Google Scholar 

  • Moncreiff, C.A. and M.J. Sullivan. 2001. The trophic importance of epiphytic algae in subtropical seagrass beds: Evidence from multiple stable isotope analyses. Marine Ecology Progress Series 215:93-106.

    Article  CAS  Google Scholar 

  • Moore, J.C., E.L. Berlow, D.C. Coleman, P.C. de Ruiter, Q. Dong, A. Hastings, N.C. Johnson, M.S. McCann, K. Melville, P.J. Morin, K. Nadelhoffer, A.D. Rosemond, D.M. Post, J.L. Sabo, K.M. Scow, M.J. Vanni, and D.H. Wall. 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7:584-600.

    Article  Google Scholar 

  • Mumford, P.L. 1999. The effects of environmental stress and primary productivity on food chain length in Florida Bay. Master of Science thesis, Florida International University.

    Google Scholar 

  • Mutchler, T., M.J. Sullivan, and B. Fry. 2004. Potential of 14N isotope enrichment to resolve ambiguities in coastal trophic relationships. Marine Ecology Progress Series 266:27-33.

    Article  Google Scholar 

  • Parker, P.L. 1964. The biogeochemistry of the stable isotopes of carbon in a marine bay. Geochimica et Cosmochimica Acta 28:1155-1164.

    Article  CAS  Google Scholar 

  • Phillips, D.L. 2001. Mixing models in analyses of diet using multiple stable isotopes:A critique. Oecologia 127:166-170.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D.L. and J.W. Gregg. 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127:171-179 (see also erratum, Oecologia 128: 204).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D.L. and J.W. Gregg. 2003. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136:261-269.

    Article  PubMed  Google Scholar 

  • Phillips, D.L. and P.L. Koch. 2002. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130:114-125.

    Article  Google Scholar 

  • Yamamuro, M, H. Kayanne, and H. Yamano. 2003. δ15N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems. Marine Pollution Bulletin 46: 452-458.

    Article  CAS  PubMed  Google Scholar 

Section 5.4

  • Case, J.W. and H.R. Krouse. 1980. Variations in sulphur content and stable sulphur isotope composition of vegetation near a SO2 source at Fox Creek, Alberta, Canada. Oecologia 44:248-257.

    Article  Google Scholar 

  • Fry, B. 2002. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25:264-271.

    Article  Google Scholar 

  • Harrigan et al. 1989. Listed above; see Section 5.1 readings.

    Google Scholar 

  • Krouse, H.R. 1980. Sulphur isotopes in our environment. In P. Fritz and J. Ch. Fontes (eds.), Handbook of Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment, A. Elsevier, Amsterdam, pp. 435-471.

    Google Scholar 

  • Krouse, H.R., A.H. Legge, and H.M. Brown. 1984. Sulphur gas emissions in the boreal forest: The West Whitecourt case study. V. Stable sulphur isotopes. Water, Air and Soil Pollution 22:321-347.

    Article  CAS  Google Scholar 

  • Peterson, B.J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review. Acta Oecologica 20:479-487.

    Article  Google Scholar 

  • Phillips and Gregg. 2003. Listed above; see Section 5.1 readings.

    Google Scholar 

  • Phillips and Koch. 2002. Listed above; see Section 5.1 readings.

    Google Scholar 

  • Winner, W.E., J.D. Bewley, H.R. Krouse, and H.M. Brown. 1978. Stable sulfur isotope analysis of SO2 pollution impact on vegetation. Oecologia 36:351-361.

    Article  Google Scholar 

Section 5.5

  • Kendall, C. and J.J. McDonnell. 1998. Isotope Tracers in Catchment Hydrology. Elsevier Health Sciences, Amsterdam.

    Google Scholar 

  • McCutchan, J.H. Jr., W.M. Lewis Jr., C. Kendall, and C.C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378-390.

    Article  CAS  Google Scholar 

  • Peterson. 1999. Listed above; see Section 5.4 readings.

    Google Scholar 

  • Phillips and Gregg. 2001. Listed above; see Section 5.1 readings.

    Google Scholar 

  • Phillips and Gregg. 2003. Listed above, see Section 5.1 readings.

    Google Scholar 

  • Post, D.M. 2002. Using stable isotope methods to estimate trophic position: Models, methods, and assumptions. Ecology 83:703-718.

    Article  Google Scholar 

  • Schell, D.M. 1983. Carbon-13 and carbon-14 in Alaskan aquatic organisms: Delayed production from peat in Arctic food webs. Science 219:1968-1071.

    Article  Google Scholar 

  • Vander Zanden, J.M. and J.B. Rasmussen. 2001. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46:2061-2066.

    Article  CAS  Google Scholar 

Section 5.7

  • Fry, B., W. Brand, F.J. Mersch, K. Tholke, and R. Garritt. 1992. Automated analysis system for coupled δ13C and δ15N measurements. Analytical Chemistry 64:288-291.

    Article  CAS  Google Scholar 

  • Mortazavi, B. and J.P. Chanton. 2004. Use of Keeling plots to determine sources of dissolved organic carbon in nearshore and open ocean systems. Limnology and Oceanography 49: 102-108.

    Article  CAS  Google Scholar 

  • Voss, M., B. Larsen, M. Leivuori, and H. Vallius. 2000. Eutrophication signals in coastal Baltic Sea sediments. Journal of Marine Systems (Special Issue) 25:287-298.

    Google Scholar 

Section 5.8

  • Boesch, D.F. and R.E. Turner. 1984. Dependence of fishery species on salt marshes: The role of food and refuge. Estuaries 7:460-468.

    Article  Google Scholar 

  • Currin, C.A., et al. 2003. Listed above; see Section 5.1 readings.

    Google Scholar 

  • DeLaune, R.D. and W.H. Patrick Jr. 1990. Nitrogen cycling in Louisiana Gulf Coast brackish marshes. Hydrobiologia 199:73-79.

    Article  CAS  Google Scholar 

  • Eldridge, P.M. and L.A. Cifuentes. 2001. A stable isotope model approach to estimating the contribution of organic matter from marshes to estuaries. In M.P. Weinstein (ed.), Concepts and Controversies in Marsh Ecology. Kluwer Academic, Hingham, MA, pp. 495-513.

    Google Scholar 

  • Fry and Sherr. 1984. Listed above; see Section 5.1 readings.

    Google Scholar 

  • Gearing, J.N. 1988.The use of stable isotope ratios for tracing the nearshore-offshore exchange of organic matter. In B.-O. Jansson (ed.), Lecture Notes on Coastal and Estuarine Studies, Vol. 22. Springer-Verlag, New York, pp. 69-101.

    Google Scholar 

  • Haines, E.B. 1976. Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh. Limnology and Oceanography 21:880-883.

    Article  Google Scholar 

  • Haines, E.B. 1977. The origins of detritus in Georgia salt marsh estuaries. Oikos 29:254-260.

    Article  Google Scholar 

  • Haines, E.B. 1979. Interactions between Georgia salt marshes and coastal waters: A changing paradigm. In R.I. Livingston (ed.), Ecological Processes in Coastal and Marine Systems. Plenum, New York, pp. 35-46.

    Chapter  Google Scholar 

  • Haines, E.B. and C.L. Montague. 1979. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60:48-56.

    Article  Google Scholar 

  • Neff, J.C., F.S. Chapin III, and P.M. Vitousek. 2003. Breaks in the cycle: Dissolved organic nitrogen in terrestrial ecosystems. Frontiers in Ecology and Environment 1:205-211.

    Article  Google Scholar 

  • Nixon, S.W. 1980. Between coastal marshes and coastal wates—A review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In P. Hamilton and K.B. McDonald (eds.), Estuarine and Wetland Processes. Plenum, New York, pp. 437-521.

    Chapter  Google Scholar 

  • Page, H.M. 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuarine, Coastal and Shelf Science 45: 823-834.

    Article  Google Scholar 

  • Peterson, B.J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review. Acta Oecologica 20:479-487.

    Article  Google Scholar 

  • Peterson, B.J., R.W. Howarth, and R.H. Garritt. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227:1361-1363.

    Article  CAS  PubMed  Google Scholar 

  • Sherr, E.B. 1982. Carbon isotope composition of organic seston and sediments in a Georgia salt marsh estuary. Geochimica et Cosmochimica Acta 46:1227-1232.

    Article  CAS  Google Scholar 

  • Silliman, B.R. and J.C. Zieman. 2001. Top-down control of Spartina alteniflora production by periwinkle grazing in a Virginia salt marsh. Ecology 82:2830-2845.

    Article  Google Scholar 

  • Silliman, B.R., C.A. Layman, K. Geyer, and J.C. Zieman. 2004. Predation by the black-clawed mud crab, Panopeus herbstii, in Mid-Atlantic salt marshes: Further evidence for top-down control of marsh grass production. Estuaries 27:188-196.

    Article  Google Scholar 

  • Tenore, K.R. 1977. Growth of Capitella capitata cultured on various levels of detritus derived from different sources. Limnology and Oceanography 22:936-941.

    Article  Google Scholar 

  • Tenore, K.R. 1981. Organic nitrogen and caloric content of detritus. I. Utilization by the deposit-feeding polychaete, Capitella capitata. Estuarine and Coastal Marine Science 12: 39-47.

    Article  CAS  Google Scholar 

  • Tenore, K.R., R.B. Hanson, B.E. Dornseif, and C.N. Wiederhold. 1979. The effect of organic nitrogen supplement on the utilization of different sources of detritus. Limnology and Oceanography 24:350-355.

    Article  CAS  Google Scholar 

  • Tenore, K.R., R.B. Hanson, J. McClain, A.E. Maccubbin, and R.E. Hodson. 1984. Changes in composition and nutritional value to a benthic deposit feeder of decomposing detritus pools. Bulletin of Marine Science 35:299-311.

    Google Scholar 

  • Turner, R.E. 1978. Community plankton respiration in a salt marsh estuary and the importance of macrophytic leachates. Limnology and Oceanography 23:442-451.

    Article  Google Scholar 

  • Turner, R.E. 1993. Carbon, nitrogen and phosphorus leaching rates from Spartina alterniflora salt marshes. Marine Ecology Progress Series 92:135-140.

    Article  CAS  Google Scholar 

Section 5.9

  • Ayliffe, L.K., T.E. Cerling, T. Robinson, A.G. West, M. Sponheimer, B.H. Passey, J. Hammer, B. Roeder, M.D. Dearing, and J.R. Ehleringer. 2004. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139:11-22.

    Article  CAS  PubMed  Google Scholar 

  • Fry, B. 1981. Natural stable carbon isotope tag traces Texas shrimp migrations. Fishery Bulletin 79:337-345.

    Google Scholar 

  • Fry, B. and C.K. Arnold. 1982. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia (Berlin) 54:200-204.

    Article  Google Scholar 

  • Fry et al. 1987. Listed above; see Section 5.1 readings.

    Google Scholar 

  • Harvey, C.J., P.C. Hanson, T.E. Essington, P.B. Brown, and J.F. Kitchell. 2002. Using bioenergetics models to predict stable isotope ratios in fishes. Canadian Journal of Fisheries and Aquatic Sciences 59:115-124.

    Article  Google Scholar 

  • Herzka, S.Z. and G.J. Holt. 2000. Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: Potential applications to settlement studies. Canadian Journal of Fisheries and Aquatic Sciences 57:137-147.

    Article  Google Scholar 

  • Herzka, S.Z., S.A. Holt, and G.J. Holt. 2001. Documenting the settlement history of individual fish larvae using stable isotope ratios: Model development and validation. Journal of Experimental Marine Biology and Ecology 265:49-74.

    Article  Google Scholar 

  • Herzka, S.Z., S.A. Holt, and G.J. Holt. 2002.Toward the characterization of settlement patterns of red drum (Sciaenops ocellatus) larvae to estuarine nursery habitat: A stable isotope approach. Marine Ecology Progress Series. 226:143-156.

    Article  Google Scholar 

  • Hesslein R.H., K.A. Hallard, and P. Ramlal. 1993. Relpacement of sulfur, carbon and nitrogen intissue of growing broad whitefish (Coregonous nasus) in response to a change in diet traced by δ34S, δ13C, and δ15 N. Canadian Journal of Fisheries and Aquatic Sciences 50: 2071-2076.

    Article  CAS  Google Scholar 

  • Olive, P.J.W., J.K. Pinnegar, N.V.C. Polunin, G. Richards, and R. Welch. 2003. Isotope trophicstep fractionation: A dynamic equilibrium model. Journal of Animal Ecology 72:608-617.

    Article  Google Scholar 

  • Podlesak, D.W., S.R. McWilliams, and K.A. Hatch. 2005. Stable isotopes in breath, blood, feces and feathers can indicate intra-individual changes in the diet of migratory songbirds. Oecologia 142:501-510.

    Article  PubMed  Google Scholar 

  • Suzuki, I.W., A. Kasai, K. Nakayama, and M. Tanaka. 2005. Differential isotopic enrichment and half-life among tissues in Japanese temperate bass (Lateolabrax japonicus) juveniles: implications for analyzing migration. Canadian Journal of Fisheries and Aquatic Sciences 62:671-678.

    Article  Google Scholar 

  • Tieszen, L.L., T.W. Boutton, K.G. Tesdahl, and N.A. Slade. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57:32-37.

    Article  Google Scholar 

  • West, A.G., L.K. Ayliffe, T.E. Cerling, T.F. Robinson, B. Karren, M.D. Dearing, and J.R. Ehleringer. 2004. Short-term diet changes revealed using stable carbon isotopes in horse tail-hair. Functional Ecology 18:616-624.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fry, B. (2006). Mixing. In: Stable Isotope Ecology. Springer, New York, NY. https://doi.org/10.1007/0-387-33745-8_5

Download citation

Publish with us

Policies and ethics