Skip to main content

Branching in Colonial Hydroids

  • Chapter
Branching Morphogenesis

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Cnidarians are primitive multi-cellular animals whose body is constructed of two epithelial layers and whose gastric cavity has only one opening. Most cnidarians are colonial. Colonial hydroids with their branched body can be regarded as a model for the whole phylum and are the most-studied cnidarian group with respect to developmental biology. Their colonies are constructed by repetition of limited number of developmental modules. The new modules are formed in the course of activity of terminal elements—growing tips of stolons and shoots. The growing tips of cnidarians, in contrast to those of plants, lack cell proliferation and drive morphogenesis instead by laying down and shaping the outer skeleton and formation of new colony elements. Cell multiplication takes place proximally to the growing tips. Branching in colonial hydroids happens due to the emergence of the new growing tip within the existing structures or by subdivision of the growing tip into several rudiments. Marcomorphogenetic events associated with different variants of branching are described, and the problems of pattern control are discussed in brief. Less is known about genetic basis of branching control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fujisawa T, Sugiyama T. Genetic analysis of developmental mechanisms in Hydra. IV. Characterization of a nematocyst-deficient strain. J Cell Sci 1978;30:175–85.

    PubMed  CAS  Google Scholar 

  2. Bode H, Dunne J, Heimfeld S et al. Transdifferentiation occurs continously in adult Hydra. In: Yamada Science Foundation, ed. Current Topics in Developmental Biology. Japan: Academic Press, 1986:20:257–80.

    Google Scholar 

  3. Smid I, Tardent P. Migration of I-cells from ectoderm to endoderm in Hydra attenuata Pall (Cnidaria, Hydrozoa) and their subsequent differentiation. Dev Biol 1984;106:469–77.

    PubMed  CAS  Google Scholar 

  4. Teragawa CK, Bode HR. Migrating interstitial cells differentiate into neurons in hydra. Dev Biol 1995;171:286–93.

    PubMed  CAS  Google Scholar 

  5. Van de Vyver G. Etude du developpment embryonnaire des hydraires athecates (Gymnoblastiques) a gonophores. 2. Formes a planula. Arch Biol (Paris) 1967;78:451–518.

    Google Scholar 

  6. Bodo F, Bouillon J. Etude histologique du developpment embryonnaire de queiques Hydromeduses de Roscoff: Phialidium hemisphaericum (L.), Obelia sp Peron et Lesueur, Sarsia eximia (Allman), Podocoryne carnea (Sars), Gonionemus vertens Agassiz. Cah Biol 1968;9:69–104.

    Google Scholar 

  7. Lenhoff HM. Our link with the Trambleys — Abraham (1710–1784), MAurice (1874–1942) and Jean-Gustave (1903–1977). In: Tardent P, Tardent R, eds. Developmental and cellular biology of coelenterates. Amsterdam: Elsevier/N. Holland Biomed Press, 1980:xvii–xxiv.

    Google Scholar 

  8. Burnett AL. A model of growth and cell differentiation in Hydra. Amer Naturalist 1966;100:165–89.

    Google Scholar 

  9. Marcum BA, Campbell RD. Developmental roles of epithelial and interstitial cell lineages in hydra: Aanalysis of chimeras. J Cell Sci 1978;32:233–47.

    PubMed  CAS  Google Scholar 

  10. Rose PG, Burnett AL. The origin of secretory cells in Cordylophora caspia during regeneration. Wilhelm Roux’s Arch EntwMech Org 1970;165:192–216.

    Google Scholar 

  11. Rose PG, Burnett AL. The origin of the mucous cells in Hydra viridis. II. Mid-gastric regeneration and budding. Wilhelm Roux’s Arch EntwMech Org 1970;165:177–91.

    Google Scholar 

  12. Werner B. New investigations on systematics and evolution of the class Scyphozoa and the phylum Cnidaria. Publs Seto Mar Biol Lab 1973;20:35–61.

    Google Scholar 

  13. Werner B. Die neue Cnidariaklasse Cubozoa. Verh Dtsch Zool Ges 1976;230.

    Google Scholar 

  14. Werner B. Life cycles of the Cnidaria. In: Tardent P, Tardent R, eds. Development and Cellular Biology of Coelenterates. Elsevier / North-Holland: Elsevier / North-Holland Biomedical Press 1980:3–10.

    Google Scholar 

  15. Beklemishev VN. Principles of comparative anatomy of Invertebrates. Edinburgh and University of Chicago Press: Oliver & Boyd Ltd 1970;1–490.

    Google Scholar 

  16. Marfenin NN. Evolution of colonial organisation in hydroid order Leptolida. Transactions of Pale-ontological Institute, Ac Sci USSR 1987;222:4–19.

    Google Scholar 

  17. Beloussov LV. Growth and morphogenesis of some marine hydrozoa according to histological data and time-lapse studies. Publ Seto Mar Biol Lab 1973;20:315–66.

    Google Scholar 

  18. Beloussov LV, Dorfman YaG. On the mechanics of growth and morphogenesis in hydroid polyps. Amer Zool 1974;14:719–34.

    Google Scholar 

  19. Beloussov LV, Badenko LA, Labas JuA. Growth rhythms and species-specific shape in Thecaphora hydroids. In: Tardent P, Tardent R, eds. Developmental and Cellular Biology of Coelenterates. Amsterdam: Elsevier/North-Holland Biomedical Press, 1980:175–8.

    Google Scholar 

  20. Beloussov LV, Kazakova NI, Labas JuA. Growth pulsations in hydroid polyps: Kinematics, biological role, and cytophysiology. In: Rensing L, ed. Oscillations and Morphogenesis. New York: Marcel Dekker Inc., 1993:183–93.

    Google Scholar 

  21. Beloussov LV, Labas JuA, Badenko LA. Growth pulsations and rudiment shapes in hydroid polyps. Zhurnal Obshchej Biologii 1984;45:796–806.

    Google Scholar 

  22. Crowell S. Morphogenetic events associated with stolon elongation in colonial hydroids. Amer Zool 1974;14:665–72.

    Google Scholar 

  23. Hale LJ. Contractility and hydroplasmic movements in the hydroid Clytia johnstoni. Quarterly J Microsc Sci 1960;101:339–50.

    Google Scholar 

  24. Wyttenbach ChR. The dynamics of stolon elongation in the hydroid, Campanularia flexuosa. J Exp Zool 1968;167:333–52.

    Google Scholar 

  25. Wyttenbach ChR, Crowell S, Suddith RL. The cyclic elongation of stolons and uprights in the hydroid, Campanularia. Biol Bull 1965;129:429

    Google Scholar 

  26. Wyttenbach ChR, Crowell S, Suddith RL. Variations in the mode of stolon growth among different genera of colonial hydroids, and their evolutionary implications. J Morphol 1973;139:363–75.

    Google Scholar 

  27. Braverman M. Studies on hydroid differentiation. VII. The hydrozoan stolon. J Morphol 1971;135:131–52.

    PubMed  CAS  Google Scholar 

  28. Hale LJ. Cell movement, cell division and growth in the hydroid Clytia johnstoni. J Embryol Exp Morph 1964;12:517–38.

    PubMed  CAS  Google Scholar 

  29. Hale LJ. The pattern of growth of Clytia johnstoni. J Embryol Exp Morphol 1973;29:283–309.

    PubMed  CAS  Google Scholar 

  30. Braverman M. Studies on hydroid differentiation IV. Cell movements in Podocoryne carnea hydranths. Growth 1969;33:99–111.

    PubMed  CAS  Google Scholar 

  31. Braverman M. The cellular basis of hydroid morphogenesis. Publ Seto Mar Biol Lab 1973;20:221–56.

    Google Scholar 

  32. Crowell S, Wyttenbaàæ ChR, Suddith RL. Evidence against the concept of growth zones in hydroids. Biol Bull 1965;129:403

    Google Scholar 

  33. Kossevitch IA. Cell migration during growth of hydroid colony. Zhurnal Obshchej Biologii 1999;60:91–8.

    Google Scholar 

  34. Suddith RL. Cell proliferation in the terminal regions of the internodes and stolons of the colonial hydroid Campanularia flexuosa. Amer Zool 1974;14:745–55.

    Google Scholar 

  35. Wyttenbach ChR. Sites of mitotic activity in the colonial hydroid, Campanularia flexuosa. Anat Rec 1965;151:483

    Google Scholar 

  36. Wyttenbach ChR. Cell movements associated with terminal growth in colonial hydroids. Amer Zool 1974;14:699–717.

    Google Scholar 

  37. Marfenin NN, Burykin YuB, Ostroumova TV. Organismal regulation of the balanced growthy in hydroid colony Gonothyraea loveni (Allm.). Zhurnal Obshchej Biologii 1999;60:80–90.

    Google Scholar 

  38. Gooday GW. An autoradiographic study of hyphal growth of some fungi. J Gen Microbiology 1971;67:125–33.

    CAS  Google Scholar 

  39. Mulisch M. Chitin in Protistan organisms. Distribution, synthesis and deposition. Europ J Protistol 1993;29:1–18.

    Google Scholar 

  40. Katz D, Rosenberger RF. Hyphal wall synthesis in Aspergillus nidulans: Effect of protein synthesis inhibition and osmotic shock on chitin insertion and morphogenesis. J Bacteriol 1971;108:184–90.

    PubMed  CAS  Google Scholar 

  41. Robertson NF. The growth process in fungi. A Rev Phytopath 1968;6:115–136.

    Google Scholar 

  42. Stratford M. Another brick in the wall? Recent developments concerning the yeast cell envelope. Yeast 1994;10:1741–52.

    PubMed  CAS  Google Scholar 

  43. Wessels JGH, Sietsma JY, Sonnenberg ASM. Wall synthesis and assembly during hyphal morphogenesis in Schizophyllum commune. J Gen Microbiology 1983;129:1607–1616.

    CAS  Google Scholar 

  44. Compere P. Cytochemical labelling of chitin. In: Giraud-Guille MM, ed. Chitin in Life Sciences. Lyon, France: Andre Publisher, 1996:66–87.

    Google Scholar 

  45. Zaraisky AG, Beloussov LV, Labas JuA et al. Studies of cellular mechanisms of growth pulsations in hydroid polyps. Russian Journal of Developmental Biology 1984;15:163–169.

    Google Scholar 

  46. Berking S, Hesse M, Herrmann K. A shoot meristem-like organ in animals; monopodial and sympodial growth in Hydrozoa. Int J Dev Biol 2002;46:301–308.

    PubMed  Google Scholar 

  47. Marfenin NN. The phenomenon of coloniality. Moscow. Moscow State Univ Publisher, 1993:1–239.

    Google Scholar 

  48. Kosevich IA. Regulation of formation of the elements of the hydroid polyps colony. Russian Journal of Developmental Biology 1996;27:95–101.

    Google Scholar 

  49. Marfenin NN, Kosevich IA Colonial morphology of the hydroid Obelia loveni (Allm.)(Campanulariidae). Vestnik Moskovskogo Universiteta Biologia 1984;2:37–45.

    Google Scholar 

  50. Kosevich IA Development of stolon’s and stem’s internodes in hydroid genera Obelia (Campanulariidae). Vestnik Moskovskogo Universiteta Biologia 1990;3:26–32.

    Google Scholar 

  51. Kosevich IA. Regulation of the “giant” shoot structure in the colonial hydroid Obelia longissima (Campanulariidae). Russian Journal of Developmental Biology 1991;22:204–210.

    Google Scholar 

  52. Kossevitch IA Role of the skeleton in determination of the branching points in hydroid colonies. Zhurnal Obshchej Biologii 2002;63:40–49.

    CAS  Google Scholar 

  53. Belousov LV, Dorfman YaG. Mechanisms of growth and morphogenesis in hydroid polyps by the data of time lapse microcinematography. Russian Journal of Developmental Biology 1974;5:437–445.

    Google Scholar 

  54. Kosevich IA, Marfenin NN. Colonial morphology of tyhe hydroid Obelia longissima (Pallas, 1766)(Campanulariidae). Vestnik Moskovskogo Universiteta Biologia 1986;3:44–52.

    Google Scholar 

  55. Marfenin NN. The hydroid colony as an organism: Regulation of growth in the entire colony. Proceedings of the 6th International Conference on Coelenterate biology 1995;315–320.

    Google Scholar 

  56. Leontovich AA, Marfenin NN. Connection of major intercolonial processes at branching in colonial hydroids. Zhurnal Obshchej Biologii 1990;51:353–362.

    Google Scholar 

  57. Bode HR. Activity of Hydra cells in vitro and in regenerating cell reaggregates. Amer Zool 1974;14:543–550.

    Google Scholar 

  58. Bosch TC, David CN. Growth regulation in Hydra: Relationship between epithelial cell cycle length and growth rate. Dev Biol 1984;104:161–171.

    PubMed  CAS  Google Scholar 

  59. Blackstone NW. Gastrovascular flow and colony development in two colonial hydroids. Biol Bull 1996;190:56–68.

    Google Scholar 

  60. Blackstone NW. Dose-response relationships for experimental heterochrony in a colonial hydroid. Biol Bull 1997;193:47–61.

    Google Scholar 

  61. Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik 1972;12:30–39.

    PubMed  CAS  Google Scholar 

  62. Meinhardt H, Gierer A. Applications of a theory of biological pattern formation based on lateral inhibition. J Cell Sci 1974;15:321–346.

    PubMed  CAS  Google Scholar 

  63. Meinhardt H. Models of biological pattern formation: Common mechanism in plant and animal development. Int J Dev Biol 1996;40:123–134.

    PubMed  CAS  Google Scholar 

  64. Muller WA, Plickert G. Quantitative analysis of an inhibitory gradient field in the hydrozoan stolon. Wilhelm Roux’s Arch. 1982;191:56–63.

    Google Scholar 

  65. Plickert G. Mechanically induced stolon branching in Eirene viridula (Thecata, Campanulinidae). In: Tardent P, Nardent R, eds. Developmental and cellular biology of Coelenterates. Amsterdam: Elsevier/North-Holland Biomedical Press, 1980:185–190.

    Google Scholar 

  66. Plickert G. Low-molecular-wight factor from colonial hydroids affect pattern formation. Wilhelm Roux’s Archiv Dev Biol 1987;248–256.

    Google Scholar 

  67. Plickert G, Heringer A, Hiller B. Analysis of spacing in a periodic pattern. Dev Biol 1987;120:399–411.

    Google Scholar 

  68. Dudgeon SR, Buss LW. Growth with the flow: On the maintenance and malleability of colony form in the hydroid Hydractinia. Amer Naturalist 1996;147:667–91.

    Google Scholar 

  69. Dudgeon SR, Wagner A, Vaisnys RJ et al. Dynamics of gastrovascular circulation: Clues to understanding colony integration and morphogenesis in hydrozoans. In: Grassle JP, Kelsey A, Oates E, Snelgrove PV, eds. Twenty Third Benthic Ecology Meeting. New Brunswick, Nj, USA: Rutgers the State Univ Inst Marine Coastal Sciences, 1995:5.

    Google Scholar 

  70. Dudgeon S, Wagner A, Vaisnys JR et al. Dynamics of gastrovascular circulation in the hydrozoan Podocoryne carnea: The one-polyp case. Biol Bull 1999;196:1–17.

    Google Scholar 

  71. Fulton C. Rhythmic movements in Cordylophora. J cell comp Physiol 1963;61:39–52.

    Google Scholar 

  72. Karlsen AG, Marfenin NN. Hydroplasm movements in the colony of hydroids, Dynamena pumila L. and some other species taken as examples. Zhurnal Obshchej Biologii 1984;45:670–680.

    Google Scholar 

  73. Marfenin NN. The functioning of the pulsatory-peristaltic type transport system in colonial hydroids. Zhurnal Obshchej Biologii 1985;46:153–164.

    Google Scholar 

  74. Winkle Van DH, Blackstone NW. Video microscopical measures of gastrovascular flow in colonial hydroids. Invertebrate Biology 1997;116:6–16.

    Google Scholar 

  75. Marfenin NN. Study of the integration of the colony of Dynamena pumila (L.) using quantitative morphologival criteria. Zhurnal Obshchej Biologii 1977;38:409–422.

    Google Scholar 

  76. Berking S. Metamorphosis of Hydractinia echinata. Insights into pattern formation in Hydroids. Roux’s Arch Dev Biol 1984;193:370–378.

    Google Scholar 

  77. Berking S. Hydrozoa metamorphosis and pattern formation. Curr Top Dev Biol 1998;38:81–131.

    PubMed  CAS  Google Scholar 

  78. Berking S. A model for budding in hydra: Pattern formation in concentric rings. J Theor Biol 2003;222:37–52.

    PubMed  Google Scholar 

  79. Leontovich AA. Regularities in spatial distribution of hydranth and stolons in a hydroid, Cordylophora inkermanica (Hydrozoa, Clavidae). Zhurnal Obshchej Biologii 1991;52:534–550.

    Google Scholar 

  80. Meinhardt H. A model for pattern formation of hypostome, tentacles, and foot in hydra: How to form structures close to each other, how to form them at a distance. Dev Biol 1993;157:321–333.

    PubMed  CAS  Google Scholar 

  81. Meinhardt H. Organizer and axes formation as a self-organizing process. Int J Dev Biol 2001;45:177–188.

    PubMed  CAS  Google Scholar 

  82. Meinhardt H, Gierer A. Pattern formation by local self-activation and lateral inhibition. Bio Essays 2000;22:753–760.

    CAS  Google Scholar 

  83. Pfeifer R, Berking S. Control of formation of the two types of polyps in Thecocodium quadratum (Hydrozoa, Cnidaria). Int J Dev Biol 1995;39:395–400.

    PubMed  CAS  Google Scholar 

  84. Walther M, Ulrich R, Kroiher M et al. Metamorphosis and pattern formation in Hydractinia echinata, a colonial hydroid. Int J Dev Biol 1996;40:313–322.

    PubMed  CAS  Google Scholar 

  85. Blackstone NW. Morphological, physiological and metabolic comparisons between runner-like and sheet-like inbred lines of a colonial hydroid. J Exp Biol 1998;201:2821–2831.

    PubMed  CAS  Google Scholar 

  86. Blackstone NW. Redox control in development and evolution: Evidence from colonial hydroids. J Exp Biol 1999;202(24):3541–53.

    PubMed  CAS  Google Scholar 

  87. Blackstone NW. Redox control and the evolution of multicellularity. BioEssays. 2000;22:947–953.

    PubMed  CAS  Google Scholar 

  88. Blackstone NW. Redox state, reactive oxygen species and adaptive growth in colonial hydroids. J Exp Biol 2001;204:1845–1853.

    PubMed  CAS  Google Scholar 

  89. Blackstone NW. Redox signaling in the growth and development of colonial hydroids. J Exp Biol 2003;206:651–658.

    PubMed  CAS  Google Scholar 

  90. Wolpert L. Positional information and pattern formation. Philos Trans R Soc Lond B Biol Sci 1981;295:441–4450.

    PubMed  CAS  Google Scholar 

  91. Wolpert L. The evolutionary origin of development: Cycles, patterning, privilege and continuity. Development 1994;Supplement:79–84.

    Google Scholar 

  92. Wolpert L. One hundred years of positional information. Trends Genet 1996;12:359–364.

    PubMed  CAS  Google Scholar 

  93. Kerszberg M, Wolpert L. The origin of metazoa and the egg: A role for cell death. J Theor Biol 1998;193:535–537.

    PubMed  Google Scholar 

  94. Beloussov LV. Patterns of mechanical stresses and formation of the body plans in animal embryos. Verh Dtsch Zool Ges 1996;89:219–229.

    Google Scholar 

  95. Belousov LV. Possible ontogenetic mechanisms governing formation of principal morphogenetic types of thecaphoran hydroids. Zhurnal Obshchej Biologii 1975;36:203–211.

    CAS  Google Scholar 

  96. Beloussov LV, Grabovsky VI. A Geometro-mechanical model for pulsatile morphogenesis. Comput Methods Biomech Biomed Engin 2003;6:53–63.

    PubMed  CAS  Google Scholar 

  97. Beloussov LV. Basic morphogenetic processes in Hydrozoa and their evolutionary implications: An exercise in rational taxonomy. In: Williams RB, Cornelius PFS, Hughes RG, Robson EA, eds. Coelenterate Biology: Recent Research On Cnidaria And Ctenophora. Dortrecht: Kluwer Acad Publ., 1991;61–67.

    Google Scholar 

  98. Kossevitch IA, Herrmann K, Berking S. Shaping of colony elements in Laomedea flexuosa Hinks (Hydrozoa, Thecaphora) includes a temporal and spatial control of skeleton hardening. Biol Bull 2001;201:417–423.

    PubMed  CAS  Google Scholar 

  99. Wolpert L. Positional information revisited. Development 1989;(Supplement):3–12.

    Google Scholar 

  100. Wolpert L, Stein WD. Positional information and pattern formation. In: Maqlacinski GM, Bryant SV, eds. Pattern formation. A primer in developmental biology. New-York: Macmillan Publishing Company, A Division of Macmillan Inc., 1984:3–21.

    Google Scholar 

  101. Hobmayer B, Rentzsch F, Kuhn K et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 2000;407:186–189.

    PubMed  CAS  Google Scholar 

  102. Gauchat D, Kreger S, Holstein T et al. prdl-a, a gene marker for hydra apical differentiation related to triploblastic paired-like head-specific genes. Development 1998;125:1637–1645.

    PubMed  CAS  Google Scholar 

  103. Technau U, Cramer VL, Rentzsch F et al. Parameters of self-organization in Hydra aggregates. Proc Natl Acad Sci USA 2000;97:12127–12131.

    PubMed  CAS  Google Scholar 

  104. Broun M, Sokol S, Bode HR. Cngsc, a homologue of goosecoid, participates in the patterning of the head, and is expressed in the organizer region of Hydra. Development 1999;26:5245–5254.

    Google Scholar 

  105. Gauchat D, Mazet F, Berney C et al. Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning. Proc Natl Acad Sci USA 2000;97:4493–4498.

    PubMed  CAS  Google Scholar 

  106. Hermans-Borgmeyer I, Schinke B, Schaller HC et al. Isolation of a marker for head-specific cell differentiation in hydra. Differentiation 1996;61:95–101.

    PubMed  CAS  Google Scholar 

  107. Martinez DE, Dirksen ML, Bode PM et al. Budhead, a fork head/HNF-3 homologue, is expressed during axis formation and head specification in hydra. Dev Biol 1997;192:523–536.

    PubMed  CAS  Google Scholar 

  108. Technau U, Bode HR. HyBral. a Brachyury homologue, acts during head formation in Hydra. Development 1999;126:999–1010.

    PubMed  CAS  Google Scholar 

  109. Shenk MA, Bode HR, Steele RE. Expression of Cnox-2, a HOM/HOX homeobox gene in hydra, is correlated with axial pattern formation. Development 1993;117:657–667.

    PubMed  CAS  Google Scholar 

  110. Shenk MA, Gee L, Steele RE et al. Expression of Cnox-2, a HOM/HOX gene, is suppressed during head formation in Hydra. Dev Biol 1993;160:108–118.

    PubMed  CAS  Google Scholar 

  111. Mokady O, Dick MH, Lackschewitz D et al. Over one-half billion years of head conservation? Expression of an ems class gene in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Proc Natl Acad Sci USA 1998;95:3673–368.

    PubMed  CAS  Google Scholar 

  112. Cartwright P, Buss LW. Colony integration and the expression of the Hox gene, Cnox-2, in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). J Exp Zool 1999;285:57–62.

    PubMed  CAS  Google Scholar 

  113. Cartwright P, Bowsher J, Buss LW. Expression of a Hox gene, Cnox-2, and the division of labor in a colonial hydroid. Proc Natl Acad Sci USA 1999; 96:2183–2186.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Kosevich, I.A. (2005). Branching in Colonial Hydroids. In: Branching Morphogenesis. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-30873-3_5

Download citation

Publish with us

Policies and ethics