Skip to main content

Part of the book series: Series on Integrated Circuits and Systems ((ICIR))

  • 1847 Accesses

Abstract

This chapter begins with the concept of the thermal runaway and optimization methods to prevent the thermal runaway during reliability screening test (burn-in). Then we review the thermal management of the VLSI circuits during normal operating conditions to prevent thermal runaway and finally discuss the temperature measurement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mark Miller (AMD). “Next generation burn-in and test systems for Athlon microprocessors: hybrid burn-in”, Burn-in and Test Socket Workshop, 2001.

    Google Scholar 

  2. A. Vassighi, O. Semenov, and M. Sachdev. “Thermal Runaway Avoidance”, IEEE International Reliability Physics Symposium, pages 655–656, 2004.

    Google Scholar 

  3. D. Brooks and M. Martonosi, “Dynamic Thermal Management for High-Performance Micro-processors”, Proceedings of 7th International Symposium High-Performance Computer Architecture, IEEE CS Press, pages 171–182, 2001.

    Google Scholar 

  4. K. Kanda, K. Nose, H. Kawaguchi, and T. Sakurai, “Design Impact of Positive Temperature dependence on Drain Current in Sub-l-V CMOS VLSIs”, IEEE Journal of Solid-State Circuits, Vol. 36, No. 10, 2001.

    Google Scholar 

  5. K. Banerjee, L. Sheng-Chih, A. Keshavarzi, S. Narendra, and V. De, “A self-consistentjunction temperature estimation methodology for nanometer scale ICs with implications for performance and thermal management”, IEEE International Electron Devices Meeting, pages 36.7.1–36.7.4, 2003.

    Google Scholar 

  6. A. Vassighi, O. Semenov, M. Sachdev, and A. Keshavarzi, “Thermal management of high performance microprocessors in burn-in environment”, Proceedings of 18th IEEE International Symposium on Defect and Fault tolerance in VLSI Systems, 2003.

    Google Scholar 

  7. Intel Corporation, “Intel Pentium 4 Processor with 512-KB L2 Cache on 0.13 Micron Process and Intel Pentium 4 Processor Extreme Edition Supporting Hyper-Threading Technology: Datasheet”, Order number 298643-012, 2004.

    Google Scholar 

  8. Intel Corporation, “Mobile Intel Pentium 4 Processor-M: Datasheet”, Order Number 250686-007, 2003.

    Google Scholar 

  9. Intel Corp., “Intel Pentium 4 Processor with 512-KB L2 Cache on 0.13 Micron Process Thermal Design Guidelines: Datasheet”, Order Number 252161-001, 2002.

    Google Scholar 

  10. Intel Corp., “IA-32 Intel Architecture Software Developer’s Manual. Volume 3: System Programming Guide”, Order number 253668, 2004.

    Google Scholar 

  11. http://www.acpi.info.

    Google Scholar 

  12. ACPI4Linux Documentation, http://acpi.sourceforge.net/documentation/thermal.html.

    Google Scholar 

  13. Advanced Power Management (APM) Specification by Intel and Microsoft.

    Google Scholar 

  14. B. Travis, “Temperature management ICs combat system meltdown”, EDN Magazine, pages 39–48, 1996.

    Google Scholar 

  15. A. Bakker, J.H. Huijsing, “Micropower CMOS temperature sensor with digital output”, IEEE Journal of Solid State Circuits, Vol. 31, No.7, pages 933–937, 1996.

    Article  Google Scholar 

  16. K.S. Szajda, C.G. Sodini, H.F. Bowman, “Micropower CMOS temperature sensor with digital output”, IEEE Journal of Solid State Circuits, Vol. 31, No.9, pages 1308–1313, 1996.

    Article  Google Scholar 

  17. H. Sanchez, B. Kuttanna, T. Olson, M. Alexander, Motorola, G. Gerosa, Motorola, R. Philip, Motorola, J. Alvarez, Motorola, “Thermal Management System for High Performance PowerPCTM Microprocessors”, Proceedings of COMPCON pages 325, 1997.

    Google Scholar 

  18. D.L. Blackburn, “Temperature measurements of semiconductor devices-a review”, Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Pages 70–80, 2004.

    Google Scholar 

  19. D.L. Blackburn, “A review of thermal characterization of power transistors”, Fourth Annual IEEE Semiconductor Thermal and Temperature Measurement Symposium, SEMI-THERM IV., Pages: 1–7, 1988.

    Google Scholar 

  20. D.W. Berning, and D.L. Blackburn, “The effect of magnetic package leads on the measurement of thermal resistance of semiconductor devices”, IEEE transaction on Electron Devices, Vol. ED-28, No. 5, pages 609–611, 1981.

    Google Scholar 

  21. D.L. Blackburn, F.F. Oettinger, and S. Rubin, “Transient thermal response of power transistors”, IEEE Transaction on Industrial Electronics and Control Instrumentation, Vol. IECE-22, No.2, pages 134–141, 1975.

    Google Scholar 

  22. S.M. Sze, “Physics of semiconductor devices”, John Wiley and Sons, 1981.

    Google Scholar 

  23. D.L. Blackburn, “Semiconductor device temperature measurement”, Future Circuit International, Vol.4, pages 75–83, 1998.

    Google Scholar 

  24. M.G. Adlerstein, M.P. Zaitlin, “Thermal resistance measurements for AlGaAs/GaAs heterojunction bipolar transistors”, IEEE Transactions on Electron Devices, Vol.38, Issue 6, Pages 1553–1554, 1991.

    Article  Google Scholar 

  25. Y.H. Chang, Y.T. Wu, “Measurement of junction temperature in hetrojunction bipolar transistors”, Proceedings of 3rd IEEE InternationalCaracus Conference on Device, Circuits, and Systems, D59/l–D59/4, 2000.

    Google Scholar 

  26. N. Bovolon, P. Baureis, J.E. Muller, P. Zwicknagel, R. Schultheis, and E. Zanoni, “A Simple Method for the Thermal Resistance Measurement of AlGaAs/GaAs Heterojunction Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol. 45, No. 8, pages 1846–1848, 1998.

    Article  Google Scholar 

  27. D.E. Dawson, “CW Measurement of HBT Thermal Resistance”, IEEE Transactions on Electron Devices, Vol. 39, No. 10, pages 2235–2239, 1992.

    Article  Google Scholar 

  28. W. Liu, “Measurement of Junction Temperature of an AlGaAs/GaAs Heterojunction Bipolar Transistor Operating at Large Power Densities”, IEEE Transactions on Electron Devices, Vol. 42, No. 2, pages 358–360, 1995.

    Article  Google Scholar 

  29. G.B. Gao, M.S. Unlu, H. Morkoc, and D.L. Blackburn, “Emitter Ballasting Resistor Design for, and Current Handling Capability of AlGaAs/GaAs Power Heterojunction Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol. 38, No. 2, pages 185–196, 1991.

    Article  Google Scholar 

  30. Guidelines for the Measurement of Thermal Resistance of GaAs FETs, JEDEC Publication No. 10, Electronic Industries Association, Washington DC, 1988.

    Google Scholar 

  31. R.J. Donarski, “Pulsed I–V and Temperature Measurement System for Characterisation of Microwave FETs”, IEEE International Microwave Symposium Digest, pages 1523–1526, 1995.

    Google Scholar 

  32. H. Fukui, “Thermal Resistance of GaAs Field-Effect Transistors”, IEEE Transactions on Electron Devices, Vol. ED-5, No. 1, pages 118–121, 1980.

    MathSciNet  Google Scholar 

  33. M. Nishiguchi, M. Fujihara, A. Miki, and H. Nishizawa, “Precision Comparison of Surface Temperature Measurement Techniques for GaAs ICs”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 16, No. 5, pages 543–549, 1993.

    Article  Google Scholar 

  34. S. Feng, X. Xie, C. Lu, G. Shen, G. Gao, and X. Zhang, “The Thermal Characterization of Packaged Semiconductor Device”, Proceedings 16th Annual IEEE Semiconductor Temperature Measurement and Management Symposium, pages 220–226, 2000.

    Google Scholar 

  35. Z. Jakopovic, Z. Bencic, and F. Kolonic, “Important Properties of Transient Thermal Impedance for MOSGated Power Semiconductors”, Proceedings of the IEEE International Symposium on Industrial Electronics, Vol. 2, pages 574–578, 1999.

    Google Scholar 

  36. D.L. Blackburn, and D.W. Berning, “Power MOSFET Temperature Measurements”, Proceedings of the IEEE Power Electronics Specialists Conference, pages 400–407, 1982.

    Google Scholar 

  37. A. Piccirillo, “Complete Characterisation of Laser Diode Thermal Circuit by Voltage Transient Measurements”, Electronics Letters, Vol. 29, No. 3, pages 318–320, 1993.

    Google Scholar 

  38. S. Feng, X. Xie, W. Liu, C. Lu, Y. He, and G. Shen, “The Analysis of Thermal Characteristics of the Laser Diode by Transient Thermal Response Method”, Proceedings of 5th International Conference on Solid-State and Integrated Circuit Technology, pages 649–652, 1998.

    Google Scholar 

  39. B.J. Baliga, “Modern Power Devices”, John Wiley and Sons, Inc., 1987.

    Google Scholar 

  40. S.C. Cripps, “A New Technique for Screening and Measuring Channel Temperature in RF and Microwave Hybrid Circuits”, Proceedings of 6th Annual IEEE Semiconductor Thermal and Temperature Measurement Symposium, pages 40–42, 1990.

    Google Scholar 

  41. S.P. Marsh, “Direct Extraction Technique to Derive the Junction Temperature of HBT’s Under High Self-Heating Bias Conditions”, IEEE Transactions on Electron Devices, Vol. 47, No. 2, pages 288–291, 2000.

    Article  MathSciNet  Google Scholar 

  42. P.M. McIntosh, and C.M. Snowden, “Measurement of Heterojunction Bipolar Transistor Thermal Resistance Based on a Pulsed I–V System”, Electronics Letters, Vol. 33, No. 1, pages 100–101, 1997.

    Article  Google Scholar 

  43. J.R. Waldrop, K.C. Wang, and P.M. Asbeck, “Determination of Junction Temperature in AlGaAs/GaAs Heterojunction Bipolar Transistors by Electrical Measurement”, IEEE Transactions on Electron Devices, Vol. 39, No. 5, pages 1248–1250, 1992.

    Article  Google Scholar 

  44. D.T. Zweidinger, R.M. Fox, J.S. Brodsky, T. Jung, and S.-G. Lee, “Thermal Impedance Extraction for Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol. 43, No. 2, pages 342–346, 1996.

    Article  Google Scholar 

  45. A.R. Reid, T.C. Kleckner, M.K. Jackson, D. Marchesan, S.J. Kovacic, and J.R. Long, “Thermal Resistance in Trench-Isolated Si/SiGe Heterojunction Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol. 48, No. 7, pages 1477–1479, 2001.

    Article  Google Scholar 

  46. A. Ammous, “Transient Temperature Measurements and Modeling of IGBT’s Under Short Circuit”, IEEE Transactions on Power Electronics, Vol. 13, No. 1, pages 12–25, 1998.

    Article  Google Scholar 

  47. B.M. Tenbroek, M.S.L. Lee, W. Redman-White, R.J.T. Bunyan, and M.J. Uren, “Self-Heating Effects in SOI MOSFETs and Their Measurement by Small Signal Conductance Techniques”, IEEE Transactions on Electron Devices, Vol. 43, No. 12, pages 2240–2248, 1996.

    Article  Google Scholar 

  48. W. Redman-White, M.S.L. Lee, B.M. Tenbroek, M.J. Uren, and R.J.T. Bunyan, “Direct Extraction of MOSFET Dynamic Thermal Characteristics From Standard Transistor Structures Using Small Signal Measurements”, Electronics Letters, Vol. 29, No. 13, pages 1180–1181, 1993.

    Google Scholar 

  49. J. Wei, S.K.H. Fung, W. Liu, P.C.H. Chan, and C. Hu, “Self-Heating Characterization for SOI MOSFET Based on AC Output Conductance”, Proceedings IEEE International Electron Devices Meeting, pages 175–178, 1999.

    Google Scholar 

  50. Wei Jin, W. Liu, S.K.H. Fung, P.C.H. Chan, and C. Hu, “SOI Thermal Impedance Extraction Methodology and Its Significance for Circuit Simulation”, Transactions on Electron Devices, Vol. 48, No. 4, pages 730–736, 2001.

    Article  Google Scholar 

  51. J.P. David, J. Duveau, J. Guerin, and A. Michel, “Electrical and Thermal Testing and Modeling of Breakdown in Space Solar Cells and Generators”, Conference Record 23rd IEEE Photovoltaic Specialists Conference, pages 1415–1420, 1993.

    Google Scholar 

  52. A. Hefner, D.W. Berning, D.L. Blackburn, and C. Chapuy, “A High-Speed Thermal Imaging System for Semiconductor Device Analysis”, Proceedings 17th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pages 43–49, 2001.

    Google Scholar 

  53. J. McDonald, and G. Albright, “Microthermal Imaging in the Infrared”, Electronics Cooling, 1997.

    Google Scholar 

  54. A. Yasuda, H. Yamaguchi, Y. Tanabe, N. Owada, and S. Hirasawa, “Direct Measurement of Localized Joule Heating in Silicon Devices by Means of Newly Developed High Resolution IR Microscopy”, Proceedings of 29th IEEE Annual Reliability Physics Symposium, pages 245–249, 1991.

    Google Scholar 

  55. F. Schuermeyer, R. Fitch, R. Dettmer, J. Gillespie, C. Bozada, K. Nakano, J. Sewel, J. Ebel, T. Jenkins, and L.L. Liou, “Thermal Studies on Heterostructure Bipolar Transistors Using Electroluminescence”, Proceedings IEEE Cornel Conference on High Performance Devices, pages 45–50, 2000.

    Google Scholar 

  56. J.P. Landesman, D. Floriot, E. Martin, R. Bisaro, S.L. Delage, and P. Braun, “Temperature Distributions in III–V Microwave Power Transistors Using Spatially Resolved Photoluminescence Mapping”, Proceedings of the 3rd IEEE Caracas Conferences on Devices, Circuits and Systems, D1114/1–D1114/8, 2000.

    Google Scholar 

  57. D.C. Hall, L. Goldberg, and D. Mehuys, “Technique for Lateral Temperature Profiling in Optoelctronic Devices Using a Photoluminescence Microprobe”, Applied Physics Letters, Vol. 61, No. 4, pages 384–386, 1992.

    Article  Google Scholar 

  58. Q. Kim, B. Stark, and S. Kayali, “A Novel, High Resolution, Non-Contact Channel Temperature Measurement Technique”, Proceedings of 36th Annual IEEE Reliability Physics Symposium, pages 108–112, 1998.

    Google Scholar 

  59. M. Kuball, J.M. Hayes, M.J. Uren, I. Martin, J.C.H. Birbeck, R.S. Balmer, and B.T. Hughes, “Measurement of Temperature in Active High-Power AlGaN/GaN HFETs Using Raman Spectroscopy”, IEEE Electron Device Letters, Vol. 23, No. 1, pages 7–9, 2002.

    Article  Google Scholar 

  60. J. He, V. Mehrotra, and M.C. Shaw, “Ultra-High Resolution Temperature Measurement and Thermal Management of RF Power Devices Using Heat Pipes”, Proceedings of 11th Annual Symposium on Power Semiconductor Devices and ICs, pages 145–148, 1999.

    Google Scholar 

  61. Y.S. Ju, and K.E. Goodson, “Thermal Mapping of Interconnects Subjected to Brief Electrical Stresses”, IEEE Electron Device Letters, Vol. 18, No. 11, pages 512–514, 1997.

    Article  Google Scholar 

  62. R. Abid, and F.-Z. Mezroua, “New Technique of Temperature Noncontact Measurements: Application to Thermal Characterization of GTO Thyristors in Commutation”, Canadian Conference on Electrical and Computer Engineering, Vol. 1, pages 586–589, 1995.

    Article  Google Scholar 

  63. Y.S. Ju, and K.E. Goodson, “Short-Timescale Thermal Mapping of Interconnects”, Proceedings of 35th Annual Reliability Physics Symposium, pages 320–324, 1997.

    Google Scholar 

  64. C.C. Lee, T.J. Su, and M. Chao, “Transient Thermal Measurements Using Thermooptic and Thermoelectric Effects”, Proceedings of 8th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pages 41–46, 1992.

    Google Scholar 

  65. C.C. Williams, and D. Williams, “Scanning Thermal Profiler”, Applied Physics Letters, Vol. 49, No. 23, pages 1587–1589, 1986.

    Article  Google Scholar 

  66. P. Jeong, W.S. Moo, and C.C. Lee, “Thermal Modeling and Measurement of GaN-Based HFET Devices”, IEEE Electron Device Letters, Vol. 24, No. 7, pages 424–426, 2003.

    Article  Google Scholar 

  67. A.M. Chaudhari, T.M. Woudenberg, M. Albin, and K.E. Goodson, “Transient Liquid Crystal Thermometry of Microfabricated PCR Vessel Arrays”, Journal of Microelectromechanical Systems, Vol. 7, No. 4, pages 345–355, 1998.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Thermal Runaway and Thermal Management. In: Thermal and Power Management of Integrated Circuits. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/0-387-29749-9_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-29749-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25762-4

  • Online ISBN: 978-0-387-29749-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics