Skip to main content

Use of Antioxidants in Patients with Congestive Heart Failure

  • Chapter
Antioxidants and Cardiovascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 258))

  • 960 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 1991;325:293–302.

    Google Scholar 

  2. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigators. N Engl J Med 1992;327:685–91.

    Google Scholar 

  3. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 1996;334:1349–55.

    PubMed  CAS  Google Scholar 

  4. Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001;344:1651–8.

    PubMed  CAS  Google Scholar 

  5. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999;353:2001–7.

    Google Scholar 

  6. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999;353:9–13.

    Google Scholar 

  7. Pfeffer MA, Swedberg K, Granger CB, et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 2003;362:759–66.

    PubMed  CAS  Google Scholar 

  8. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341:709–17.

    PubMed  CAS  Google Scholar 

  9. Pitt B, Williams G, Remme W, et al. The EPHESUS trial: eplerenone in patients with heart failure due to systolic dysfunction complicating acute myocardial infarction. Eplerenone Post-AMI Heart Failure Efficacy and Survival Study. Cardiovasc Drugs Ther 2001;15:79–87.

    PubMed  CAS  Google Scholar 

  10. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002;346:877–83.

    PubMed  Google Scholar 

  11. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004;350:2140–50.

    PubMed  CAS  Google Scholar 

  12. Rouleau JL, Kortas C, Bichet D, de Champlain J. Neurohumoral and hemodynamic changes in congestive heart failure: lack of correlation and evidence of compensatory mechanisms. Am Heart J 1988;116:746–57.

    PubMed  CAS  Google Scholar 

  13. Stewart DJ, Cernacek P, Costello KB, Rouleau JL. Elevated endothelin-1 in heart failure and loss of normal response to postural change. Circulation 1992;85:510–7.

    PubMed  CAS  Google Scholar 

  14. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984;311:819–23.

    Article  PubMed  CAS  Google Scholar 

  15. Dzau VJ, Colucci WS, Hollenberg NK, Williams GH. Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation 1981;63:645–51.

    PubMed  CAS  Google Scholar 

  16. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 1995;26:1257–63.

    PubMed  CAS  Google Scholar 

  17. Lefkowitz RJ, Caron MG, Stiles GL. Mechanisms of membrane-receptor regulation. Biochemical, physiological, and clinical insights derived from studies of the adrenergic receptors. N Engl J Med 1984;310:1570–9.

    Article  PubMed  CAS  Google Scholar 

  18. Hall C, Rouleau JL, Moye L, et al. N-terminal proatrial natriuretic factor. An independent predictor of long-term prognosis after myocardial infarction. Circulation 1994;89:1934–42.

    PubMed  CAS  Google Scholar 

  19. Nishikimi T, Saito Y, Kitamura K, et al. Increased plasma levels of adrenomedullin in patients with heart failure. J Am Coll Cardiol 1995;26:1424–31.

    PubMed  CAS  Google Scholar 

  20. Packer M. Interaction of prostaglandins and angiotensin II in the modulation of renal function in congestive heart failure. Circulation 1988;77:I64–I73.

    PubMed  CAS  Google Scholar 

  21. Kubo SH, Rector TS, Bank AJ, Williams RE, Heifetz SM. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 1991;84:1589–96.

    PubMed  CAS  Google Scholar 

  22. Drexler H, Hayoz D, Munzel T, et al. Endothelial function in chronic congestive heart failure. Am J Cardiol 1992;69:1596–601.

    PubMed  CAS  Google Scholar 

  23. Smith CJ, Sun D, Hoegler C, et al. Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circ Res 1996;78:58–64.

    PubMed  CAS  Google Scholar 

  24. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;323:236–41.

    Article  PubMed  CAS  Google Scholar 

  25. Shan K, Kurrelmeyer K, Seta Y, et al. The role of cytokines in disease progression in heart failure. Curr Opin Cardiol 1997;12:218–23.

    PubMed  CAS  Google Scholar 

  26. Yndestad A, Damas JK, Geir EH, et al. Increased gene expression of tumor necrosis factor superfamily ligands in peripheral blood mononuclear cells during chronic heart failure. Cardiovasc Res 2002;54:175–82.

    PubMed  CAS  Google Scholar 

  27. Ferrari R, Bachetti T, Confortini R, et al. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 1995;92:1479–86.

    PubMed  CAS  Google Scholar 

  28. Parissis JT, Venetsanou KF, Mentzikof DG, Ziras NG, Kefalas CG, Karas SM. Tumor necrosis factor-alpha serum activity during treatment of acute decompensation of cachectic and non-cachectic patients with advanced congestive heart failure. Scand Cardiovasc J 1999;33:344–50.

    PubMed  CAS  Google Scholar 

  29. Anker SD, Egerer KR, Volk HD, Kox WJ, Poole-Wilson PA, Coats AJ. Elevated soluble CD 14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 1997;79:1426–30.

    PubMed  CAS  Google Scholar 

  30. Samsonov M, Lopatin J, Tilz GP, et al. The activated immune system and the renin-angiotensin-aldosterone system in congestive heart failure. J Intern Med 1998;243:93–8.

    PubMed  CAS  Google Scholar 

  31. Werdan K. The activated immune system in congestive heart failure-from dropsy to the cytokine paradigm. J Intern Med 1998;243:87–92.

    PubMed  CAS  Google Scholar 

  32. Korantzopoulos P, Papaioannides D, Galaris D, Kokkoris S. On the role of oxidative stress in accelerated atherosclerosis observed in rheumatic diseases. Joint Bone Spine 2003;70:311–2.

    PubMed  Google Scholar 

  33. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens 2000;18:655–73.

    PubMed  CAS  Google Scholar 

  34. Ide T, Tsutsui H, Kinugawa S, et al. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 1999;85:357–63.

    PubMed  CAS  Google Scholar 

  35. Sorescu D, Griendling KK. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 2002;8:132–40.

    PubMed  CAS  Google Scholar 

  36. Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT. Cardiac myocyte necrosis induced by angiotensin II. Circ Res 1991;69:1185–95.

    PubMed  CAS  Google Scholar 

  37. Lefkowitz RJ, Caron MG, Stiles GL. Mechanisms of membrane-receptor regulation. Biochemical, physiological, and clinical insights derived from studies of the adrenergic receptors. N Engl J Med 1984;310:1570–9.

    Article  PubMed  CAS  Google Scholar 

  38. Sharov VG, Todor A, Suzuki G, Morita H, Tanhehco EJ, Sabbah HN. Hypoxia, angiotensin-II, and norepinephrine mediated apoptosis is stimulus specific in canine failed cardiomyocytes: a role for p38 MAPK, Fas-L and cyclin Dl. Eur J Heart Fail 2003;5:121–9.

    PubMed  CAS  Google Scholar 

  39. Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 1996;28:506–14.

    PubMed  CAS  Google Scholar 

  40. Belch JJ, Bridges AB, Scott N, Chopra M. Oxygen free radicals and congestive heart failure. Br Heart J 1991;65:245–8.

    PubMed  CAS  Google Scholar 

  41. Hare JM. Oxidative stress and apoptosis in heart failure progression. Circ Res 2001;89:198–200.

    PubMed  CAS  Google Scholar 

  42. Diaz-Velez CR, Garcia-Castineiras S, Mendoza-Ramos E, Hernandez-Lopez E. Increased malondialdehyde in peripheral blood of patients with congestive heart failure. Am Heart J 1996;131:146–52.

    PubMed  CAS  Google Scholar 

  43. Baumer AT, Flesch M, Wang X, Shen Q, Feuerstein GZ, Bohm M. Antioxidative enzymes in human hearts with idiopathic dilated cardiomyopathy. J Mol Cell Cardiol 2000;32:121–30.

    PubMed  CAS  Google Scholar 

  44. Dieterich S, Bieligk U, Beulich K, Hasenfuss G, Prestle J. Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Circulation 2000;101:33–9.

    PubMed  CAS  Google Scholar 

  45. De Lorgeril M, Salen P, Accominotti M, et al. Dietary and blood antioxidants in patients with chronic heart failure. Insights into the potential importance of selenium in heart failure. Eur J Heart Fail 2001;3:661–9.

    PubMed  Google Scholar 

  46. Witte KK, Clark AL, Cleland JG. Chronic heart failure and micronutrients. J Am Coll Cardiol 2001;37:1765–74.

    PubMed  CAS  Google Scholar 

  47. Mak S, Newton GE. The oxidative stress hypothesis of congestive heart failure: radical thoughts. Chest 2001;120:2035–46.

    PubMed  CAS  Google Scholar 

  48. Ferrari R, Guardigli G, Mele D, Percoco GF, Ceconi C, Curello S. Oxidative stress during myocardial ischaemia and heart failure. Curr Pharm Des 2004;10:1699–711.

    PubMed  CAS  Google Scholar 

  49. Sawyer DB, Colucci WS. Mitochondrial oxidative stress in heart failure: “oxygen wastage” revisited. Circ Res 2000;86:119–20.

    PubMed  CAS  Google Scholar 

  50. Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A. Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 1998;97:1536–9.

    PubMed  CAS  Google Scholar 

  51. Nishiyama Y, Ikeda H, Haramaki N, Yoshida N, Imaizumi T. Oxidative stress is related to exercise intolerance in patients with heart failure. Am Heart J 1998;135:115–20.

    PubMed  CAS  Google Scholar 

  52. Keith M, Geranmayegan A, Sole MJ, et al. Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 1998;31:1352–6.

    PubMed  CAS  Google Scholar 

  53. Mak S, Lehotay DC, Yazdanpanah M, Azevedo ER, Liu PP, Newton GE. Unsaturated aldehydes including 4-OH-nonenal are elevated in patients with congestive heart failure. J Card Fail 2000;6:108–14.

    PubMed  CAS  Google Scholar 

  54. Polidori MC, Savino K, Alunni G, et al. Plasma lipophilic antioxidants and malondialdehyde in congestive heart failure patients: relationship to disease severity. Free Radic Biol Med 2002;32:148–52.

    PubMed  CAS  Google Scholar 

  55. Rouleau JL, Pitt B, Dhalla NS, et al. Prognostic importance of the oxidized product of catecholamines, adrenolutin, in patients with severe heart failure. Am Heart J 2003;145:926–32.

    PubMed  CAS  Google Scholar 

  56. Singal PK, Beamish RE, Dhalla NS. Potential oxidative pathways of catecholamines in the formation of lipid peroxides and genesis of heart disease. Adv Exp Med Biol 1983;161:391–401.

    PubMed  CAS  Google Scholar 

  57. Prasad K, Gupta JB, Kalra J, Bharadwaj B. Oxygen free radicals in volume overload heart failure. Mol Cell Biochem 1992;111:55–9.

    PubMed  CAS  Google Scholar 

  58. Adamopoulos S, Parissis JT, Kremastinos DT. Endothelial dysfunction in chronic heart failure: clinical and therapeutic implications. Eur J Intern Med 2002;13:233–9.

    PubMed  CAS  Google Scholar 

  59. Belardinelli R. Endothelial dysfunction in chronic heart failure: clinical implications and therapeutic options. Int J Cardiol 2001;81:1–8.

    PubMed  CAS  Google Scholar 

  60. Habib F, Dutka D, Crossman D, Oakley CM, Cleland JG. Enhanced basal nitric oxide production in heart failure: another failed counter-regulatory vasodilator mechanism? Lancet 1994;344:371–3.

    PubMed  CAS  Google Scholar 

  61. Bauersachs J, Bouloumie A, Fraccarollo D, Hu K, Busse R, Ertl G. Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression: role of enhanced vascular superoxide production. Circulation 1999;100:292–8.

    PubMed  CAS  Google Scholar 

  62. Munzel T, Harrison DG. Increased superoxide in heart failure: a biochemical baroreflex gone awry. Circulation 1999;100:216–8.

    PubMed  CAS  Google Scholar 

  63. Landmesser U, Spiekermann S, Dikalov S, et al. Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 2002;106:3073–8.

    PubMed  CAS  Google Scholar 

  64. Olivetti G, Quaini F, Sala R, et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996;28:2005–16.

    PubMed  CAS  Google Scholar 

  65. Hill MF, Singal PK. Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation 1997;96:2414–20.

    PubMed  CAS  Google Scholar 

  66. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med 1997;336:1131–41.

    PubMed  CAS  Google Scholar 

  67. Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 1994;15:7–10.

    PubMed  CAS  Google Scholar 

  68. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991;352:345–7.

    PubMed  CAS  Google Scholar 

  69. Williams GT, Smith CA, Spooncer E, Dexter TM, Taylor DR. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 1990;343:76–9.

    PubMed  CAS  Google Scholar 

  70. Evan GI, Wyllie AH, Gilbert CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992;69:119–28.

    PubMed  CAS  Google Scholar 

  71. Singal PK, Khaper N, Palace V, Kumar D. The role of oxidative stress in the genesis of heart disease. Cardiovasc Res 1998;40:426–32.

    PubMed  CAS  Google Scholar 

  72. Cesselli D, Jakoniuk I, Barlucchi L, et al. Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res 2001;89:279–86.

    PubMed  CAS  Google Scholar 

  73. Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000;106:55–62.

    PubMed  CAS  Google Scholar 

  74. Hunt M J, Aru GM, Hayden MR, Moore CK, Hoit BD, Tyagi SC. Induction of oxidative stress and disintegrin metalloproteinase in human heart end-stage failure. Am J Physiol Lung Cell Mol Physiol 2002;283:L239–45.

    PubMed  CAS  Google Scholar 

  75. Katz SD, Yuen J, Bijou R, LeJemtel TH. Training improves endothelium-dependent vasodilation in resistance vessels of patients with heart failure. J Appl Physiol 1997;82:1488–92.

    PubMed  CAS  Google Scholar 

  76. Hambrecht R, Fiehn E, Weigl C, et al. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 1998;98:2709–15.

    PubMed  CAS  Google Scholar 

  77. Inoue N, Ramasamy S, Fukai T, Nerem RM, Harrison DG. Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ Res 1996;79:32–7.

    PubMed  CAS  Google Scholar 

  78. Qin F, Rounds NK, Mao W, Kawai K, Liang CS. Antioxidant vitamins prevent cardiomyocyte apoptosis produced by norepinephrine infusion in ferrets. Cardiovasc Res 2001;51:736–48.

    PubMed  CAS  Google Scholar 

  79. Nakamura K, Fushimi K, Kouchi H, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998;98:794–9.

    PubMed  CAS  Google Scholar 

  80. Shite J, Qin F, Mao W, Kawai H, Stevens SY, Liang C. Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy. J Am Coll Cardiol 2001;38:1734–40.

    PubMed  CAS  Google Scholar 

  81. Ghatak A, Brar MJ, Agarwal A, et al. Oxy free radical system in heart failure and therapeutic role of oral vitamin E. Int J Cardiol 1996;57:119–27.

    PubMed  CAS  Google Scholar 

  82. Keith ME, Jeejeebhoy KN, Langer A, et al. A controlled clinical trial of vitamin E supplementation in patients with congestive heart failure. Am J Clin Nutr 2001;73:219–24.

    PubMed  CAS  Google Scholar 

  83. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000;342:145–53.

    PubMed  CAS  Google Scholar 

  84. Griendling KK, Harrison DG. Out, damned dot: studies of the NADPH oxidase in atherosclerosis. J Clin Invest 2001;108:1423–4.

    PubMed  CAS  Google Scholar 

  85. Ellis GR, Anderson RA, Lang D, et al. Neutrophil superoxide anion-generating capacity, endothelial function and oxidative stress in chronic heart failure: effects of short-and long-term vitamin C therapy. J Am Coll Cardiol 2000;36:1474–82.

    PubMed  CAS  Google Scholar 

  86. Hornig B, Arakawa N, Kohler C, Drexler H. Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 1998;97:363–8.

    PubMed  CAS  Google Scholar 

  87. Rossig L, Hoffmann J, Hugel B, et al. Vitamin C inhibits endothelial cell apoptosis in congestive heart failure. Circulation 2001;104:2182–7.

    PubMed  CAS  Google Scholar 

  88. Ito K, Akita H, Kanazawa K, et al. Comparison of effects of ascorbic acid on endothelium-dependent vasodilation in patients with chronic congestive heart failure secondary to idiopathic dilated cardiomyopathy versus patients with effort angina pectoris secondary to coronary artery disease. Am J Cardiol 1998;82:762–7.

    PubMed  CAS  Google Scholar 

  89. Richartz BM, Werner GS, Ferrari M, Figulla HR. Reversibility of coronary endothelial vasomotor dysfunction in idiopathic dilated cardiomyopathy: acute effects of vitamin C. Am J Cardiol 2001;88:1001–5.

    PubMed  CAS  Google Scholar 

  90. Mak S, Newton GE. Vitamin C augments the inotropic response to dobutamine in humans with normal left ventricular function. Circulation 2001;103:826–30.

    PubMed  CAS  Google Scholar 

  91. Givertz MM, Sawyer DB, Colucci WS. Antioxidants and myocardial contractility: illuminating the “Dark Side” of beta-adrenergic receptor activation? Circulation 2001;103:782–3.

    PubMed  CAS  Google Scholar 

  92. Watson PS, Scalia GM, Galbraith A, Burstow DJ, Bett N, Aroney CN. Lack of effect of coenzyme Q on left ventricular function in patients with congestive heart failure. J Am Coll Cardiol 1999;33:1549–52.

    PubMed  CAS  Google Scholar 

  93. Khatta M, Alexander BS, Krichten CM, et al. The effect of coenzyme Q10 in patients with congestive heart failure. Ann Intern Med 2000;132:636–40.

    PubMed  CAS  Google Scholar 

  94. Khaper N, Rigatto C, Seneviratne C, Li T, Singal PK. Chronic treatment with propranolol induces antioxidant changes and protects against ischemia-reperfusion injury. J Mol Cell Cardiol 1997;29:3335–44.

    PubMed  CAS  Google Scholar 

  95. Hayek T, Attias J, Smith J, Breslow JL, Keidar S. Antiatherosclerotic and antioxidative effects of captopril in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 1998;31:540–4.

    PubMed  CAS  Google Scholar 

  96. Khaper N, Singal PK. Modulation of oxidative stress by a selective inhibition of angiotensin II type 1 receptors in MI rats. J Am Coll Cardiol 2001;37:1461–6.

    PubMed  CAS  Google Scholar 

  97. Sevanian A, Shen L, Ursini F. Inhibition of LDL oxidation and oxidized LDL-induced cytotoxicity by dihydropyridine calcium antagonists. Pharm Res 2000;17:999–1006.

    PubMed  CAS  Google Scholar 

  98. Delbosc S, Morena M, Djouad F, Ledoucen C, Descomps B, Cristol JP. Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are able to reduce superoxide anion production by NADPH oxidase in THP-1-derived monocytes. J Cardiovasc Pharmacol 2002;40:611–7.

    PubMed  CAS  Google Scholar 

  99. Delbosc S, Cristol JP, Descomps B, Mimran A, Jover B. Simvastatin prevents angiotensin II-induced cardiac alteration and oxidative stress. Hypertension 2002;40:142–7.

    PubMed  CAS  Google Scholar 

  100. Tselepis A, Doulias P, Lourida E, Glantzounis G, Tsimoyiannis E, Galaris D. Trimetazidine protects low-density lipoproteins from oxidation and cultured cells exposed to H(2)O(2) from DNA damage. Free Radic Biol Med 2001;30:1357–64.

    PubMed  CAS  Google Scholar 

  101. Lopez-Farre A, Riesco A, Digiuni E, et al. Aspirin-stimulated nitric oxide production by neutrophils after acute myocardial ischemia in rabbits. Circulation 1996;94:83–7.

    PubMed  CAS  Google Scholar 

  102. Ide T, Tsutsui H, Kinugawa S, Utsumi H, Takeshita A. Amiodarone protects cardiac myocytes against oxidative injury by its free radical scavenging action. Circulation 1999;100:690–2.

    PubMed  CAS  Google Scholar 

  103. Zafari AM, Harrison DG. Free radicals in heart failure: therapeutic targets for old and new drugs. Congest Heart Fail 2002;8:129–30.

    PubMed  Google Scholar 

  104. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 1996;98:2572–9.

    PubMed  CAS  Google Scholar 

  105. Munzel T, Kurz S, Rajagopalan S, et al. Hydralazine prevents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase. A new action for an old drug. J Clin Invest 1996;98:1465–70.

    PubMed  CAS  Google Scholar 

  106. Waagstein F, Hjalmarson A, Varnauskas E, Wallentin I. Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J 1975;37:1022–36.

    PubMed  CAS  Google Scholar 

  107. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 1996;334:1349–55.

    PubMed  CAS  Google Scholar 

  108. Bril A, Slivjak M, DiMartino MJ, et al. Cardioprotective effects of carvedilol, a novel beta adrenoceptor antagonist with vasodilating properties, in anaesthetised minipigs: comparison with propranolol. Cardiovasc Res 1992;26:518–25.

    Article  PubMed  CAS  Google Scholar 

  109. Yue TL, Wang X, Gu JL, Ruffolo RR, Jr., Feuerstein GZ. Carvedilol, a new vasodilating beta-adrenoceptor blocker, inhibits oxidation of low-density lipoproteins by vascular smooth muscle cells and prevents leukocyte adhesion to smooth muscle cells. J Pharmacol Exp Ther 1995;273:1442–9.

    PubMed  CAS  Google Scholar 

  110. Rossig L, Haendeler J, Mallat Z, et al. Congestive heart failure induces endothelial cell apoptosis: protective role of carvedilol. J Am Coll Cardiol 2000;36:2081–9.

    PubMed  CAS  Google Scholar 

  111. Yue TL, Cheng HY, Lysko PG, et al. Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. J Pharmacol Exp Ther 1992;263:92–8.

    PubMed  CAS  Google Scholar 

  112. Yue TL, McKenna PJ, Gu JL, Cheng HY, Ruffolo RR, Jr., Feuerstein GZ. Carvedilol, a new antihypertensive agent, prevents lipid peroxidation and oxidative injury to endothelial cells. Hypertension 1993;22:922–8.

    PubMed  CAS  Google Scholar 

  113. Feuerstein R, Yue TL. A potent antioxidant, SB209995, inhibits oxygen-radical-mediated lipid peroxidation and cytotoxicity. Pharmacology 1994;48:385–91.

    PubMed  CAS  Google Scholar 

  114. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94:1621–8.

    Article  PubMed  CAS  Google Scholar 

  115. Kukin ML, Kalman J, Charney RH, et al. Prospective, randomized comparison of effect of long-term treatment with metoprolol or carvedilol on symptoms, exercise, ejection fraction, and oxidative stress in heart failure. Circulation 1999;99:2645–51.

    PubMed  CAS  Google Scholar 

  116. Di Lenarda A, Sabbadini G, Salvatore L, et al. Long-term effects of carvedilol in idiopathic dilated cardiomyopathy with persistent left ventricular dysfunction despite chronic metoprolol. The Heart-Muscle Disease Study Group. J Am Coll Cardiol 1999;33:1926–34.

    PubMed  Google Scholar 

  117. Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 2003;362:7–13.

    PubMed  CAS  Google Scholar 

  118. Elkayam U, Amin J, Mehra A, Vasquez J, Weber L, Rahimtoola SH. A prospective, randomized, double-blind, crossover study to compare the efficacy and safety of chronic nifedipine therapy with that of isosorbide dinitrate and their combination in the treatment of chronic congestive heart failure. Circulation 1990;82:1954–61.

    PubMed  CAS  Google Scholar 

  119. Goldstein RE, Boccuzzi SJ, Cruess D, Nattel S. Diltiazem increases late-onset congestive heart failure in postinfarction patients with early reduction in ejection fraction. The Adverse Experience Committee; and the Multicenter Diltiazem Postinfarction Research Group. Circulation 1991;83:52–60.

    PubMed  CAS  Google Scholar 

  120. Packer M, O’Connor CM, Ghali JK, et al. Effect of amlodipine on morbidity and mortality in severe chronic heart failure. Prospective Randomized Amlodipine Survival Evaluation Study Group. N Engl J Med 1996;335:1107–14.

    PubMed  CAS  Google Scholar 

  121. Mason RP, Mak IT, Trumbore MW, Mason PE. Antioxidant properties of calcium antagonists related to membrane biophysical interactions. Am J Cardiol 1999;84:16L–22L.

    PubMed  CAS  Google Scholar 

  122. Janero DR, Burghardt B, Lopez R. Protection of cardiac membrane phospholipid against oxidative injury by calcium antagonists. Biochem Pharmacol 1988;37:4197–203.

    PubMed  CAS  Google Scholar 

  123. Mak IT, Weglicki WB. Comparative antioxidant activities of propranolol, nifedipine, verapamil, and diltiazem against sarcolemmal membrane lipid peroxidation. Circ Res 1990;66:1449–52.

    PubMed  CAS  Google Scholar 

  124. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–9.

    PubMed  CAS  Google Scholar 

  125. Steinberg D. Antioxidants and atherosclerosis. A current assessment. Circulation 1991;84:1420–5.

    PubMed  CAS  Google Scholar 

  126. Zhang X, Hintze TH. Amlodipine Releases Nitric Oxide From Canine Coronary Microvessels: An Unexpected Mechanism of Action of a Calcium Channel Blocking Agent. Circulation 1998;97:576–80.

    PubMed  CAS  Google Scholar 

  127. Zhang X, Kichuk MR, Mital S, et al. Amlodipine promotes kinin-mediated nitric oxide production in coronary microvessels of failing human hearts. Am J Cardiol 1999;84:27L–33L.

    PubMed  CAS  Google Scholar 

  128. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–42.

    PubMed  CAS  Google Scholar 

  129. Doehner W, Schoene N, Rauchhaus M, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation 2002;105:2619–24.

    PubMed  CAS  Google Scholar 

  130. Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 2002;106:221–6.

    PubMed  CAS  Google Scholar 

  131. Landmesser U, Drexler H. Allopurinol and endothelial function in heart failure: future or fantasy? Circulation 2002;106:173–5.

    PubMed  Google Scholar 

  132. Cappola TP, Kass DA, Nelson GS, et al. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 2001;104:2407–11.

    PubMed  CAS  Google Scholar 

  133. Lefer AM, Campbell B, Shin YK, Scalia R, Hayward R, Lefer DJ. Simvastatin preserves the ischemic-reperfused myocardium in normocholesterolemic rat hearts. Circulation 1999;100:178–84.

    PubMed  CAS  Google Scholar 

  134. Endres M, Laufs U, Huang Z, et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 1998;95:8880–5.

    PubMed  CAS  Google Scholar 

  135. Tsao PS, Aoki N, Lefer DJ, Johnson G, III, Lefer AM. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation 1990;82:1402–12.

    PubMed  CAS  Google Scholar 

  136. Entman ML, Michael L, Rossen RD, et al. Inflammation in the course of early myocardial ischemia. FASEB J 1991;5:2529–37.

    PubMed  CAS  Google Scholar 

  137. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989;320:365–76.

    Article  PubMed  CAS  Google Scholar 

  138. Buerke M, Weyrich AS, Lefer AM. Isolated cardiac myocytes are sensitized by hypoxia-reoxygenation to neutrophil-released mediators. Am J Physiol 1994;266:H128–36.

    PubMed  CAS  Google Scholar 

  139. Laufs U, La F, V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998;97:1129–35.

    PubMed  CAS  Google Scholar 

  140. Laufs U, Fata VL, Liao JK. Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem 1997;272:31725–9.

    PubMed  CAS  Google Scholar 

  141. Weber C, Erl W, Weber KS, Weber PC. HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J Am Coll Cardiol 1997;30:1212–7.

    PubMed  CAS  Google Scholar 

  142. Dunzendorfer S, Rothbucher D, Schratzberger P, Reinisch N, Kahler CM, Wiedermann CJ. Mevalonate-dependent inhibition of transendothelial migration and chemotaxis of human peripheral blood neutrophils by pravastatin. Circ Res 1997;81:963–9.

    PubMed  CAS  Google Scholar 

  143. Koh KK. Effects of statins on vascular wall: vasomotor function, inflammation, and plaque stability. Cardiovasc Res 2000;47:648–57.

    PubMed  CAS  Google Scholar 

  144. Albert MA, Danielson E, Rifai N, Ridker PM. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA 2001;286:64–70.

    PubMed  CAS  Google Scholar 

  145. Node K, Fujita M, Kitakaze M, Hori M, Liao JK. Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation 2003;108:839–43.

    PubMed  CAS  Google Scholar 

  146. Tardif JC, Cote G, Lesperance J, et al. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. Multivitamins and Probucol Study Group. N Engl JMed 1997;337:365–72.

    CAS  Google Scholar 

  147. Sia YT, Lapointe N, Parker TG, et al. Beneficial effects of long-term use of the antioxidant probucol in heart failure in the rat. Circulation 2002;105:2549–55.

    PubMed  CAS  Google Scholar 

  148. Siveski-Iliskovic N, Hill M, Chow DA, Singal PK. Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation 1995;91:10–5.

    PubMed  CAS  Google Scholar 

  149. Nakamura R, Egashira K, Machida Y, et al. Probucol attenuates left ventricular dysfunction and remodeling in tachycardia-induced heart failure: roles of oxidative stress and inflammation. Circulation 2002;106:362–7.

    PubMed  CAS  Google Scholar 

  150. Langsjoen PH, Folkers K. Long-term efficacy and safety of coenzyme Q10 therapy for idiopathic dilated cardiomyopathy. Am J Cardiol 1990;65:521–3.

    PubMed  CAS  Google Scholar 

  151. Hofman-Bang C, Rehnquist N, Swedberg K, Wiklond I, Astrom H. Coenzyme Q10 as an adjunctive in the treatment of chronic congestive heart failure. The Q10 Study Group. J Card Failure 1995;1:101–7.

    CAS  Google Scholar 

  152. Siveski-Iliskovic N, Hill M, Singal PK. Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation 1995;9:10–5.

    Google Scholar 

  153. Tavazzi L, Tognoni G, Frazosi MG, Latini R, Maggioni AP, Marchioli R, Nicolosi GL, Porcu M. Rationale and design of the GISSI heart failure trial: a large trial to assess the effects of n-3 polyunsaturated fatty acids and rosuvastatin in symptomatic congestive heart failure. Eur J Heart Fail 2004;6:635–41.

    PubMed  CAS  Google Scholar 

  154. Kjekshus J, Pedersen TR, Olsson AG, Faergeman O, Pyorala K. The effects of simvastatin or the incidence of heart failure in patients with coronary heart disease. J Card Failure 1997;3:259–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ducharme, A., Rouleau, J.L., White, M. (2006). Use of Antioxidants in Patients with Congestive Heart Failure. In: Bourassa, M.G., Tardif, JC. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 258. Springer, Boston, MA. https://doi.org/10.1007/0-387-29553-4_19

Download citation

  • DOI: https://doi.org/10.1007/0-387-29553-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29552-7

  • Online ISBN: 978-0-387-29553-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics