Skip to main content

Membrane Resealing Mediated by Lysosomal Exocytosis

  • Chapter
Book cover Lysosomes

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 1842 Accesses

Abstract

Ca2+-regulated exocytosis was proposed to mediate plasma membrane repair, but until recently the nature of the vesicles involved was unknown. Recent work from our laboratory identified lysosomes as the intracellular organelles responsible for this process. Ca2+ triggers the exocytosis of conventional lysosomes, and this process is regulated by a ubiquitously expressed synaptotagmin, Syt VII. Dominant-negative or gene deletion approaches revealed that Syt VII is required for normal lysosomal exocytosis and membrane resealing. Cells from Syt VII-deficient mice show defects in lysosomal exocytosis and membrane repair, and the animals develop a form of autoimmune myopathy similar to the human diseases polymyositis/dermatomyositis.

Secretion of lysosomal enzymes is a common physiological event, often observed in a variety of tissues. Lysosomes, however, have been traditionally regarded as “terminal” compartments, the final site of accumulation of endocytosed macromolecules. This concept is derived mostly from the fact that lysosomes do not constitutively recycle to the plasma membrane, in contrast to what is observed with early endosomes. The norm thus became to interpret lysosomal enzyme secretion as a result of altered sorting pathways: the enzymes would be diverted at the level of the trans-Golgi network into “classical” Ca2+-regulated secretory granules. However, in several cases there is no direct evidence that lysosomal enzymes colocalize with “classical” secretory products inside specialized granules. And as further discussed in this chapter, many cell types that lack “classical” secretory granules secrete lysosomal enzymes when stimulated. Therefore, it is conceivable that a significant fraction of the observations previously interpreted as alterations in lysosomal enzyme sorting are a consequence of direct exocytosis of conventional lysosomes. In “professional” regulated secretory cells, conventional lysosomes may be secreted in parallel with “classical” granules, since the [Ca2+]i elevation induced by a secretagogue can trigger both processes (Fig. 1). We discuss below recent evidence suggesting that this pathway of conventional lysosome exocytosis has an important role in plasma membrane repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jessup W, Leoni P, Dean RT. Constitutive and triggered lysosomal enzyme secretion. London: Butterworths 1985.

    Google Scholar 

  2. Hirano T, Saluja A, Ramarao P et al. Apical secretion of lysosomal enzymes in rabbit pancreas occurs via a secretagogue regulated pathway and is increased after pancreatic duct obstruction. J Clin Invest 1991; 87:865–869.

    Article  PubMed  CAS  Google Scholar 

  3. Helenius A, Mellman I, Wall D et al. Endosomes. Trends Biochem Sci 1983; 8:245–250.

    Article  CAS  Google Scholar 

  4. Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol 1989; 5:483–525.

    Article  PubMed  CAS  Google Scholar 

  5. Prence EM, Dong JM, Sahagian GG. Modulation of the transport of a lysosomal enzyme by PDGF. J Cell Biol 1990; 110:319–326.

    Article  PubMed  CAS  Google Scholar 

  6. Tooze J, Hollinshead M, Hensel G et al. Regulated secretion of mature cathepsin B from rat exocrine pancreatic cells. Eur J Cell Biol 1991; 56(2):187–200.

    PubMed  CAS  Google Scholar 

  7. Grondin G, Beaudoin AR. Immunocytochemical and cytochemical demonstration of a novel selective lysosomal pathway (SLP) of secretion in the exocrine pancreas. J Histochem Cytochem 1996; 44:357–368.

    PubMed  CAS  Google Scholar 

  8. Jamieson JD, Palade GE. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells. J Cell Biol 1971; 50(1):135–158.

    Article  PubMed  CAS  Google Scholar 

  9. Peters PJ, Borst J, Oorschot V et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perform and granzymes. J Exp Med 1991; 173:1099–1109.

    Article  PubMed  CAS  Google Scholar 

  10. Griffiths GM, Isaaz S. Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J Cell Biol 1993; 120:885–896.

    Article  PubMed  CAS  Google Scholar 

  11. Raposo G, Tenza D, Mecheri S et al. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 1997; 8(12):2631–2645.

    PubMed  CAS  Google Scholar 

  12. Stinchcombe JC, Griffiths GM. Regulated secretion from hemopoietic cells. J Cell Biol 1999; 147:1–5.

    Article  PubMed  CAS  Google Scholar 

  13. Mostov K, Werb Z. Journey across the Osteoclast. Science 1997; 276:219–220.

    Article  PubMed  CAS  Google Scholar 

  14. Page LJ, Darmon AJ, Uellner R et al. L is for lytic granules: Lysosomes that kill. Biochem Biophys acta 1998; 1401:146–156.

    Article  PubMed  CAS  Google Scholar 

  15. Orlow SJ. Melanosomes are specialized members of the lysosomal lineage of organelles. J Invest Dermatol 1995; 105(1):3–7.

    Article  PubMed  CAS  Google Scholar 

  16. Ashino Y, Ying X, Dobbs LG et al. [Ca(2+)](i) oscillations regulate type II cell exocytosis in the pulmonary alveolus. Am J Physiol Lung Cell Mol Physiol 2000; 279(1):L5–13.

    PubMed  CAS  Google Scholar 

  17. Tulsiani DR, Abou-Haila A, Loeser CR et al. The biological and functional significance of the sperm acrosome and acrosomal enzymes in mammalian fertilization. Exp Cell Res 1998; 240(2):151–164.

    Article  PubMed  CAS  Google Scholar 

  18. Kobayashi T, Vischer UM, Rosnoblet C et al. The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells. Mol Biol Cell 2000; 11(5):1829–1843.

    PubMed  CAS  Google Scholar 

  19. Wagner DD. The Weibel-Palade body: The storage granule for von Willebrand factor and P-selectin. Thromb Haemost 1993; 70(1):105–110.

    PubMed  CAS  Google Scholar 

  20. Tardieux I, Webster P, Ravesloot J et al. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 1992; 71:1117–1130.

    Article  PubMed  CAS  Google Scholar 

  21. Rodriguez A, Samoff E, Rioult MG et al. Host cell invasion by trypanosomes requires lysosomes and microtubule/kinesin-mediated transport. J Cell Biol 1996; 134:349–362.

    Article  PubMed  CAS  Google Scholar 

  22. Tardieux I, Nathanson MH, Andrews NW. Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients. J Exp Med 1994; 179(3):1017–1022.

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez A, Rioult MG, Ora A et al. A trypanosome-soluble factor induces IP3 formation, intra-cellular Ca2+ mobilization and microfilament rearrangement in host cells. J Cell Biol 1995; 129:1263–1273.

    Article  PubMed  CAS  Google Scholar 

  24. Burleigh BA, Caler EV, Webster P et al. A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. J Cell Biol 1997; 136:609–620.

    Article  PubMed  CAS  Google Scholar 

  25. Caler EV, Vaena de Avalos S, Haynes PA et al. Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J 1998; 17:4975–4986.

    Article  PubMed  CAS  Google Scholar 

  26. Caler EV, Morty RE, Burleigh BA et al. Dual role of signaling pathways leading to Ca(2+) and cyclic AMP elevation in host cell invasion by Trypanosoma cruzi. Infect Immun 2000; 68(12):6602–6610.

    Article  PubMed  CAS  Google Scholar 

  27. Rodriguez A, Martinez I, Chung A et al. cAMP regulates Ca2+-dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes. J Biol Chem 1999; 274:16754–16759.

    Article  PubMed  CAS  Google Scholar 

  28. Caler EV, Chakrabarti S, Fowler KT et al. The exocytosis-regulatory protein Synaptotagmin VII mediates cell invasion by Trypanosoma cruzi. J Exp Med 2001; 193:1097–1104.

    Article  PubMed  CAS  Google Scholar 

  29. Chavez RA, Miller SG, Moore HP. A biosynthetic regulated secretory pathway in constitutive secretory cells. J Cell Biol 1996; 133(6):1177–1191.

    Article  PubMed  CAS  Google Scholar 

  30. Coorsen JR, Schmitt H, Aimers W. Ca2+ triggers massive exocytosis in Chinese hamster ovary cells. EMBO J 1996; 15:3787–3791.

    Google Scholar 

  31. Ninomiya Y, Kishimoto T, Miyashita Y et al. Ca2+-dependent exocytic pathways in Chinese Hamster Ovary fibroblasts revealed by a caged-Ca2+ compound. J Biol Chem 1996; 271:17751–17754.

    Article  PubMed  CAS  Google Scholar 

  32. Holtzman E. Lysosomes. New York: Plenum Press, 1989.

    Google Scholar 

  33. Xu T, Binz T, Niemann H et al. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nature Neuroscience 1998; 1:192–200.

    Article  PubMed  CAS  Google Scholar 

  34. Kasai H, Kishimoto T, Liu T-T et al. Multiple and diverse forms of regulated exocytosis in wild type and defective PC12 cells. Proc Natl Acad Sci USA 1999; 96:945–949.

    Article  PubMed  CAS  Google Scholar 

  35. Rodriguez A, Webster P, Ortego J et al. Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol 1997; 137:93–104.

    Article  PubMed  CAS  Google Scholar 

  36. Schiavo G, Osborne SL, Sgouros JG. Synaptotagmins: More isoforms than functions? Biochem Biophys Res Commun 1998; 248(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  37. Sudhof TC, Rizo J. Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron 1996; 17(3):379–388.

    Article  PubMed  CAS  Google Scholar 

  38. Nonet ML, Grundahl K, Meyer BJ et al. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 1993; 73(7):1291–1305.

    Article  PubMed  CAS  Google Scholar 

  39. DiAntonio A, Schwarz TL. The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron 1994; 12(4):909–920.

    Article  PubMed  CAS  Google Scholar 

  40. Geppert M, Goda Y, Hammer RE et al. Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse. Cell 1994; 79(4):717–727.

    Article  PubMed  CAS  Google Scholar 

  41. Li C, Ullrich B, Zhang JZ et al. Ca(2+)-dependent and-independent activities of neural and nonneural synaptotagmins. Nature 1995; 375(6532):594–599.

    Article  PubMed  CAS  Google Scholar 

  42. Craxton M, Goedert M. Alternative splicing of synaptotagmins involving transmembrane exon skipping. FEBS Lett 1999; 460(3):417–422.

    Article  PubMed  CAS  Google Scholar 

  43. Fukuda M, Ogata Y, Saegusa C et al. Alternative splicing isoforms of synaptotagmin VII in the mouse, rat and human. Biochem J 2002; 365 (Pt 1):173–180.

    Article  PubMed  CAS  Google Scholar 

  44. Ullrich B, Sudhof TC. Differential distributions of novel synaptotagmins: Comparison to synapsins. Neuropharmacology 1995; 34(11):1371–1377.

    Article  PubMed  CAS  Google Scholar 

  45. Martinez I, Chakrabarti S, Hellevik T et al. Synaptotagmin VII regulates Ca(2+)-dependent exocytosis of lysosomes in fibroblasts. J Cell Biol 2000; 148(6):1141–1149.

    Article  PubMed  CAS  Google Scholar 

  46. Chapman ER. Synaptotagmin: A Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 2002; 3(7):498–508.

    Article  PubMed  CAS  Google Scholar 

  47. Bommert K, Charlton MP, DeBello WM et al. Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis. Nature 1993; 363(6425):163–165.

    Article  PubMed  CAS  Google Scholar 

  48. Mikoshiba K, Fukuda M, Moreira JE et al. Role of the C2A domain of synaptotagmin in transmitter release as determined by specific antibody injection into the squid giant synapse preterminal. Proc Natl Acad Sci USA 1995; 92(23):10703–10707.

    Article  PubMed  CAS  Google Scholar 

  49. Thomas DM, Elferink LA. Functional analysis of the C2A domain of synaptotagmin 1: Implications for calcium-regulated secretion. J Neurosci 1998; 18(10):3511–3520.

    PubMed  CAS  Google Scholar 

  50. Steinhardt RA, Guoqiang B, Alderton JM. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 1994; 263:390–393.

    Article  PubMed  CAS  Google Scholar 

  51. Bi GQ, Alderton JM, Steinhardt RA. Calcium-regulated exocytosis is required for cell membrane resealing. J Cell Biol 1995; 131(6 Pt 2):1747–1758.

    Article  PubMed  CAS  Google Scholar 

  52. Miyake K, McNeil PL. Vesicle accumulation and exocytosis at sites of plasma membrane disruption. J Cell Biol 1995; 131(6 Pt 2):1737–1745.

    Article  PubMed  CAS  Google Scholar 

  53. Dai J, Sheetz MP. Regulation of endocytosis, exocytosis, and shape by membrane tension. Cold Spring Harb Symp Quant Biol 1995; 60:567–571.

    PubMed  CAS  Google Scholar 

  54. Togo T, Alderton JM, Bi GQ et al. The mechanism of facilitated cell membrane resealing. J Cell Sci 1999; 112 (Pt 5):719–731.

    PubMed  CAS  Google Scholar 

  55. Togo T, Krasieva TB, Steinhardt RA. A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell 2000; 11(12):4339–4346.

    PubMed  CAS  Google Scholar 

  56. McNeil PL, Vogel SS, Miyake K et al. Patching plasma membrane disruptions with cytoplasmic membrane. J Cell Sci 2000; 113 (Pt 11):1891–1902.

    PubMed  CAS  Google Scholar 

  57. Lippincott-Schwartz J, Yuan L, Tipper C et al. Brefeldin A’s effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 1991; 67:601–616.

    Article  PubMed  CAS  Google Scholar 

  58. Reddy A, Caler E, Andrews N. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 2001; 106:157–169.

    Article  PubMed  CAS  Google Scholar 

  59. Bakker AC, Webster P, Jacob WA et al. Homotypic fusion between aggregated lysosomes triggered by elevated [Ca2+]i in fibroblasts. J Cell Sci 1997; 110 (Pt 18):2227–2238.

    PubMed  CAS  Google Scholar 

  60. McNeil PL. Incorporation of macromolecules into living cells. Methods Cell Biol 1989; 29:153–173.

    Article  PubMed  CAS  Google Scholar 

  61. McNeil PL, Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol 1992; 140(5):1097–1109.

    PubMed  CAS  Google Scholar 

  62. McNeil PL, Steinhardt RA. Loss, restoration and maintenance of plasma membrane integrity. J Cell Biol 1997; 137:1–4.

    Article  PubMed  CAS  Google Scholar 

  63. Chen WT. Surface changes during retraction-induced spreading of fibroblasts. J Cell Sci 1981; 49:1–13.

    PubMed  CAS  Google Scholar 

  64. Lin YC, Ho CH, Grinnell F. Fibroblasts contracting collagen matrices form transient plasma membrane passages through which the cells take up fluorescein isothiocyanate-dextran and Ca2+. Mol Biol Cell 1997; 8(1):59–71.

    PubMed  CAS  Google Scholar 

  65. Grinnell F. Fibroblast-collagen-matrix contraction: Growth-factor signalling and mechanical loading. Trends Cell Biol 2000; 10(9):362–365.

    Article  PubMed  CAS  Google Scholar 

  66. Tomasek JJ, Haaksma CJ, Eddy RJ et al. Fibroblast contraction occurs on release of tension in attached collagen lattices: Dependency on an organized actin cytoskeleton and serum. Anat Rec 1992; 232(3):359–368.

    Article  PubMed  CAS  Google Scholar 

  67. Chakrabarti S, Kobayashi KS, Flavell RA et al. Impaired membrane resealing and autoimmune myositis in synaptotagmin VII-deficient mice. J Cell Biol 2003; 162(4):543–549.

    Article  PubMed  CAS  Google Scholar 

  68. Gomperts BD, Baldwin JM, Micklem KJ. Rat mast cells permeabilized with Sendai virus secrete histamine in response to Ca2+ buffered in the micromolar range. Biochem J 1983; 210(3):737–745.

    PubMed  CAS  Google Scholar 

  69. Campos-Toimil M, Edwardson JM, Thomas P. Real-time studies of zymogen granule exocytosis in intact rat pancreatic acinar cells [In Process Citation]. J Physiol 2000; 528 (Pt 2):317–326.

    Article  PubMed  CAS  Google Scholar 

  70. Tucker WC, Chapman ER. Role of synaptotagmin in Ca2+ triggered exocytosis. Biochem J 2002; 366:1–13.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Andrews, N.W. (2005). Membrane Resealing Mediated by Lysosomal Exocytosis. In: Lysosomes. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28957-7_13

Download citation

Publish with us

Policies and ethics