Skip to main content

Transistor Design to Reduce Leakage

  • Chapter
Leakage in Nanometer CMOS Technologies

Part of the book series: Series on Integrated Circuits and Systems ((ICIR))

  • 1603 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Thompson and et al. “A 90nm Logic Technology Featuring 50nm Strained Silicon Channel Transistors, 7 layers of Cu Interconnects, Low k ILD, and 1 mm2 SRAM Cell,” Technical Digest of the IEEE International Electron Devices Meeting, Washington, 2002, pp 61–64.

    Google Scholar 

  2. S. E. Thompson and et al., “A Logic Nanotechnology Featuring Strained Silicon,” IEEE Electron Device Letter, vol. 25, pp. 191–193, 2004.

    Article  Google Scholar 

  3. P. Bai, “A 65nm Logic Technology Featuring 35nm Gate Lenghts, Enhanced Channel Strain, 8 cu interconnects Layesrs, Low-k ILD and 0.57um2 SRAM Cell,” Technical Digest of the IEEE International Electron Devices Meeting, vol. pp., 2004.

    Google Scholar 

  4. Z. Ren, M. V. Fischetti, E. P. Gusev, E. A. Cartier, and M. Chudzik, “Inversion channel mobility in high-[kappa] high performance MOSFETs,” Technical Digest of the IEEE International Electron Devices Meeting, San Francisco, 2003, pp 33.2.1–4.

    Google Scholar 

  5. D. Barlage, R. Arghavani, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, A. Murthy, B. Roberds, P. Stokley, and R. Chau, “High-frequency response of 100 nm integrated CMOS transistors with high-K gate dielectrics,” International Electron Devices Meeting. Technical Digest, pp. 10.6.1–4, 2001.

    Google Scholar 

  6. D. Kahng and M. M. Atalla. Silicon-silicon dioxide field induced surface devices. IRE-AIEE Solid-State Device Research Conference, Carnegie Institute of Technology, Pittsburgh, PA, 1960.

    Google Scholar 

  7. M. M. Atalla, M. Tannenbaum and E. J. Scheibner, “Stabilization of silicon surface by thermally grown oxides,” Bell Syst. Tech. J., vol. 38, pp. 123, 1959.

    Google Scholar 

  8. E. H. Snow, B. E. Deal, A. S. Grove and C.-T. Sah, “Ion transport phenomena in insulating films using the MOS structure,” J. Appl. Phys., vol. 36, pp. 1664–1673, 1965.

    Article  Google Scholar 

  9. P. Balk, “Effects of hydrogen annealing on silicon surfaces,” Electrochemical Society Spring Meeting, San Francisco, CA, 1965.

    Google Scholar 

  10. B. Doyle, R. Arghavani, D. Barlage, S. Datta, S. Doczy, J. Kavalieros, A. Murthy and R. Chau, “Transistor elements for 30nm physical gate lengths and beyond,” Intel Technology Journal, vol. pp., 2002.

    Google Scholar 

  11. T. Ghani, et. al., “A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors,” Technical Digest of the IEEE International Electron Devices Meeting, San Francisco, 2003, pp 978–980.

    Google Scholar 

  12. Y. Bin, C. Leland, S. Ahmed, W. Haihong, S. Bell, Y. Chih-Yuh, C. Tabery, H. Chau, X. Qi, K. Tsu-Jae, J. Bokor, H. Chenming, L. Ming-Ren and D. Kyser, “FinFET scaling to 10 nm gate length,” International Electron Devices Meeting. Technical Digest, pp. 251–254, 2002.

    Google Scholar 

  13. R. Chau, B. Boyanov, B. Doyle, M. Doczy, S. Datta, S. Hareland, B. Jin, J. Kavalieros and M. Metz, “Silicon nano-transistors for logic applications,” Physica E: Low-dimensional Systems and Nanostructures, vol. 19, pp. 1–5, 2003.

    Article  Google Scholar 

  14. B. S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios and a. Chau et, “High performance fully-depleted tri-gate CMOS transistors,” IEEE Electron Device Letters, vol. 24, pp. 263–265, 2003.

    Article  Google Scholar 

  15. R. Chau, J. Kavalieros, B. Doyle, A. Murthy, N. Paulsen, D. Lionberger, D. Barlage, R. Arghavani, B. Roberds and a. Doczy et, “A 50 nm depleted-substrate CMOS transistor (DST),” International Electron Devices Meeting. Technical Digest, pp. 29.1.1–4, 2001.

    Google Scholar 

  16. R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy and a. Dewey et, “30 nm physical gate length CMOS transistors with 1.0 ps n-MOS and 1.7 ps p-MOS gate delays,” International Electron Devices Meeting 2000, pp. 45–48, 2000.

    Google Scholar 

  17. J. G. Fossum, M. M. Chowdhury, V. P. Trivedi, T.-J. King, Y.-K. Choi, J. An and B. Yu, “Physical insights on design and modeling of nanoscale FinFETs,” International Electron Devices Meeting, pp. 679–682, 2003.

    Google Scholar 

  18. V. P. Trivedi and J. G. Fossum, “Scaling fully depleted SOI CMOS,” IEEE Trans. Electron Devices, vol. 50, pp. 2095–2103, 2003.

    Article  Google Scholar 

  19. A. Ural, L. Yiming and D. Hongjie, “Electric-field-aligned growth of single-walled carbon nanotubes on surfaces,” Applied Physics Letters, vol. 81, pp. 3464–3466, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Suthram, S., Narendra, S., Thompson, S. (2006). Transistor Design to Reduce Leakage. In: Leakage in Nanometer CMOS Technologies. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/0-387-28133-9_12

Download citation

  • DOI: https://doi.org/10.1007/0-387-28133-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25737-2

  • Online ISBN: 978-0-387-28133-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics