Skip to main content

Mechanism of Propofol-Induced Central Respiratory Depression in Neonatal Rats

Anatomical Sites and Receptor Types of Action

  • Conference paper
Post-Genomic Perspectives in Modeling and Control of Breathing

Abstract

Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic, which has been increasingly used for both the induction and maintenance of general anesthesia1, 2 as well as in critical care medicine.3 When propofol is used, one of the most important adverse effects is respiratory depression,48 which is caused by suppression of the central respiratory neuronal network. It is unclear, however, whether the main site of propofol action is the brainstem or the spinal cord.48 In most previous studies, the response of respiratory neurons to propofol has been largely neglected. We address this lacuna here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. S. Sebel, and J. D. Lowdon, Propofol: a new intravenous anesthetic, Anesthesiology 71, 260–277 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. J. Tang, L. Chen, P. F. White, M. F. Watcha, R. H. Wender, R. Naruse, R. Kariger, and A. Sloninsky, Recovery profile, costs, and patient satisfaction with propofol and sevoflurane for fast-track office-based anesthesia, Anesthesiology 91, 253–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. G. Angelini, J. T. Ketzler, and D. B. Coursin, Use of propofol and other nonbenzodiazepine sedatives in the intensive care unit, Crit. Care Clin. 17, 863–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. R. M. Grounds, D. L. Maxwell, M. B. Taylor, V. Aber, and D. Royston, Acute ventilatory changes during i.v. induction of anaesthesia with thiopentone or propofol in man. Studies using inductance plethysmography, Br. J. Anaesth. 59, 1098–1102 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. N. W. Goodman, A. M. Black, and J. A. Carter, Some ventilatory effects of propofol as sole anaesthetic agent, Br. J. Anaesth. 59, 1497–1503 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. P. Kulkarni, and K. A. Brown, Ventilatory parameters in children during propofol anaesthesia: a comparison with halothane, Can. J. Anaesth. 43, 653–659 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. J. E. Sternlo, and R. H. Sandin, Recurrent respiratory depression after total intravenous anaesthesia with propofol and alfentanil. Anaesthesia 53, 378–381 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. J. E. Quandt, E. P. Robinson, W. J. Rivers, and M. R. Raffe, Cardiorespiratory and anesthetic effects of propofol and thiopental in dogs, Am. J. Vet. Res. 59, 1137–1143 (1998).

    CAS  PubMed  Google Scholar 

  9. H. Onimaru, and I. Homma, Respiratory rhythm generator neurons in medulla of brainstem-spinal cord preparation from newborn rat, Brain Res. 403, 380–384 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Y. Okada, K. Mückenhoff, G. Holtermann, H. Acker, and P. Scheid, Depth profiles of pH and PO2 in the isolated brain stem-spinal cord of the neonatal rat, Respir. Physiol. 93, 315–326 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Y. Okada, A. Kawai, K. Mückenhoff, and P. Scheid, Role of the pons in hypoxic respiratory depression in the neonatal rat, Respir. Physiol. 111, 55–63 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. A. Kawai, Y. Okada, K. Mückenhoff, and P. Scheid, Theophylline and hypoxic ventilatory response in the rat isolated brainstem-spinal cord, Respir. Physiol. 100, 25–32 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Okada, S. Kuwana, and M. Iwanami, Respiratory suppression induced by nicotine withdrawal in the neonatal rat brainstem: implications in the SIDS risk factor, Adv. Exp. Med. Biol. 499, 187–194 (2001).

    CAS  PubMed  Google Scholar 

  14. S. Kuwana, Y. Okada, and T. Natsui, Effects of extracellular calcium and magnesium on central respiratory control in the brainstem-spinal cord of neonatal rat, Brain Res. 786, 194–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Y. Okada, Z. Chen, W. Jiang, S. Kuwana, and F. L. Eldridge, Anatomical arrangement of hypercapnia-activated cells in the superficial ventral medulla of rats, J. Appl. Physiol. 93, 427–439 (2002).

    PubMed  Google Scholar 

  16. S. Kuwana, Y. Okada, Y. Sugawara, N. Tsunekawa, and K. Obata, Disturbance of neural respiratory control in neonatal mice lacking GABA synthesizing enzyme 67-kDa isoform of glutamic acid decarboxylase, Neurosocience 120, 861–870 (2003).

    Article  CAS  Google Scholar 

  17. G. Liu, J. L. Feldman, and J. C. Smith, Excitatory amino acid-mediated transmission of inspiratory drive to phrenic motoneurons, J. Neurophysiol. 64, 423–436 (1990).

    CAS  PubMed  Google Scholar 

  18. J. J. Greer, J. C. Smith, and J. L. Feldman, Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat, J. Physiol. Lond. 437, 727–749 (1991).

    CAS  PubMed  Google Scholar 

  19. J. J. Greer, J. C. Smith, and J. L. Feldman, Glutamate release and presynaptic action of AP4 during inspiratory drive to phrenic motoneurons, Brain Res. 576, 355–357 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. B. A. Orser, M. Bertlik, L. Y. Wang, and J. F. MacDonald, Inhibition by propofol (2, 6 di-isopropylphenol) of the N-methyl-D-aspartate subtype of glutamate receptor in cultured hippocampal neurones, Br. J. Pharmacol. 116, 1761–1768 (1995).

    CAS  PubMed  Google Scholar 

  21. A. Kitamura, W. Marszalec, J. Z. Yeh, and T. Narahashi, Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons, J. Pharmacol. Exp. Ther. 304, 162–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. X. P. Dong, and T. L. Xu, The actions of propofol on gamma-aminobutyric acid-A and glycine receptors in acutely dissociated spinal dorsal horn neurons of the rat, Anesth. Analg. 95, 907–914 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. B. Antkowiak, Different actions of general anesthetics on the firing patterns of neocortical neurons mediated by the GABA(a) receptor, Anesthesiology 91, 500–511 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. K. Ballanyi, H. Onimaru H, and I. Homma, Respiratory network function in the isolated brainstem-spinal cord of newborn rats, Prog. Neurobiol. 59, 583–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. L. Schwieler, D. S. Delbro, G. Engberg, and S. Erhardt, The anaesthetic agent propofol interacts with GABA(B)-receptors: an electrophysiological study in rat, Life Sci. 72, 2793–2801 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this paper

Cite this paper

Kashiwagi, M., Okada, Y., Kuwana, Si., Sakuraba, S., Ochiai, R., Takeda, J. (2004). Mechanism of Propofol-Induced Central Respiratory Depression in Neonatal Rats. In: Champagnat, J., Denavit-Saubié, M., Fortin, G., Foutz, A.S., Thoby-Brisson, M. (eds) Post-Genomic Perspectives in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 551. Springer, Boston, MA. https://doi.org/10.1007/0-387-27023-X_34

Download citation

Publish with us

Policies and ethics