Skip to main content

Abstract

Femtosecond lasers with a repetition rate of approximately 1 GHz are commonly used frequency comb generators for precise optical frequency metrology. They are conveniently compact, yield unambiguous frequency readings with the help of a commercial wavemeter, and can yield greater heterodyne beat signals against a cw laser than systems with lower repetition rates. This chapter reviews the technology of oscillators based on Ti:sapphire and Cr:forsterite that operate at repetition rates of up to 3.5 GHz. Aside from a discussion of these “standard” lasers with a typical full-width-at-half-maximum (FWHM) bandwidth of 30 nm, one section is dedicated to the generation of a broadband continuum with a 1 GHz oscillator. This laser allows frequency measurements without additional spectral broadening and can be phase locked to a reference oscillator for uninterrupted periods exceeding one day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42–44 (1991).

    Article  ADS  Google Scholar 

  2. M. Ramaswamypaye and J. G. Fujimoto, Opt. Lett. 19, 1756–1758 (1994).

    Article  ADS  Google Scholar 

  3. A. Stingl, C. Spielmann, R. Szipocs, and F. Krausz, in Conference on Lasers and Electrooptics (Opt. Soc. Am., 1996), p. 66

    Google Scholar 

  4. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Phys. Rev. Lett. 82, 3568–3571 (1999).

    Article  ADS  Google Scholar 

  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  6. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102–5105 (2000); M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, Phys. Rev. Lett. 84, 5496–5499 (2000); S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825–828 (2001); J. Stenger, T. Binnewies, G. Wilpers, F. Riehle, H. R. Telle, J. K. Ranka, R. S. Windeler, and A. J. Stentz, Phys. Rev. A 63, 021802 (2001); T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, Phys. Rev. Lett. 86, 4996–4999 (2001); G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, Meas. Sci. Techn. 13, 918–922 (2002).

    Article  ADS  Google Scholar 

  7. J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, Opt. Commun. 172, 59–68 (1999).

    Article  ADS  Google Scholar 

  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25–27 (2000); J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, Optics Letters 21, 1547–1549 (1996).

    Article  ADS  Google Scholar 

  9. L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, IEEE J. Quantum Electron. 37, 1502–1513 (2001).

    Article  ADS  Google Scholar 

  10. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, Phys. Rev. Lett. 90, 113904 (2003).

    Article  ADS  Google Scholar 

  11. T. Brabec, C. Spielmann, and F. Krausz, Opt. Lett. 17, 748–750 (1992).

    Article  ADS  Google Scholar 

  12. R. L. Fork, O. E. Martinez, and J. P. Gordon, Opt. Lett. 9, 150–152 (1984).

    Article  ADS  Google Scholar 

  13. F. Gires and C. R. Tournois, Science 258, 6112 (1964); R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, Opt. Lett. 19, 201–203 (1994).

    Google Scholar 

  14. A. Bartels, T. Dekorsy, and H. Kurz, Opt. Lett. 24, 996–998 (1999).

    Article  ADS  Google Scholar 

  15. H. W. Kogelnik, C. V. Shank, A. Dienes, and E. P. Ippen, IEEE J. Quantum Electron. 8, 373 (1972).

    Article  ADS  Google Scholar 

  16. A. Bartels, T. Dekorsy, and H. Kurz, in Conference on Lasers and Electro-Optics (OSA Technical Digest, 2000), p. CMF3

    Google Scholar 

  17. A. E. Siegman, Lasers (University Science Books, Mill Valley, California, 1986).

    Google Scholar 

  18. S. A. Diddams, T. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, in Laser Frequency Stabilization: Standards, Measurement and Applications, edited by J. L. Hall and J. Ye (SPIE, San Jose, 2001), Vol. SPIE 4269, p. 77–83.

    Google Scholar 

  19. I. Thomann, A. Bartels, K. L. Corwin, N. R. Newbury, L. Hollberg, S. A. Diddams, J. W. Nicholson, and M. F. Yan, Opt. Lett. 28, 1368–1370 (2003).

    Article  ADS  Google Scholar 

  20. I. Thomann, L. Hollberg, S. A. Diddams, and R. Equall, Appl. Optics 42, 1661–1666(2003).

    Article  ADS  Google Scholar 

  21. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jorgensen, and T. Veng, Opt. Lett. 28, 643–645 (2003).

    Article  ADS  Google Scholar 

  22. K. L. Corwin, I. Thomann, T. Dennis, R. W. Fox, W. Swann, E. A. Curtis, C. W. Oates, G. Wilpers, A. Bartels, S. L. Gilbert, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, Opt. Lett. 29, 397–399 (2004).

    Article  ADS  Google Scholar 

  23. A. Bartels, N. R. Newbury, I. Thomann, L. Hollberg, and S. A. Diddams, Opt. Lett. 29, 403–405 (2004).

    Article  ADS  Google Scholar 

  24. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, Opt. Lett. 26, 373–375 (2001).

    Article  ADS  Google Scholar 

  25. A. Bartels and H. Kurz, Opt. Lett. 27, 1839–1841 (2002).

    Article  ADS  Google Scholar 

  26. Y. Chen and H. A. Haus, J. Opt. Soc. Am. B 16, 24–30 (1999).

    Article  ADS  Google Scholar 

  27. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, Opt. Lett. 28, 944–946 (2003).

    Article  ADS  Google Scholar 

  28. T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, Opt. Lett. 27, 1842–1844 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jun Ye Steven T. Cundiff

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Bartels, A. (2005). Gigahertz Femtosecond Lasers. In: Ye, J., Cundiff, S.T. (eds) Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. Springer, Boston, MA. https://doi.org/10.1007/0-387-23791-7_3

Download citation

Publish with us

Policies and ethics