Skip to main content

Efficient Stochastic Global Optimization for Protein Structure Prediction

  • Chapter
Rigidity Theory and Applications

Part of the book series: Fundamental Materials Research ((FMRE))

Summary

The native structure of a protein may be described with reasonable accuracy as the global minimum of the free energy (in the pseudo-potential energy form), only as a function of free torsion angles. Therefore, global optimization methods might be preferable over methods designed to create dynamic ensembles, such as MD or MC that are bound by the trajectory continuity requirement or the local balance requirement.

The Monte Carlo Minimization (MCM) method outperforms zero order MC-like stochastic global optimization protocols.

The Optimal-Bias-MCM method further improves the sampling efficiency by an order of magnitude by incorporating the optimal-bias into MC conformation generation. The square-root bias derived in this work and the linear bias13 are two possible strategies.

The OBMCM algorithm can predict a 23-residue ββα peptide56, with 70 essential torsion angles and 385 atoms, starting from completely random conformations. (Figure 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Elber, Curr. Opin. Struct. Biol., 6:232 (1996).

    Article  Google Scholar 

  2. C.L. Brook III, Curr. Opin. Struct. Biol., 5:211 (1995).

    Google Scholar 

  3. T. Schlick, E. Barth, and M. Mandzink, Ann. Rev. Biophys. Biolmol. Struct., 16:179 (1997).

    Google Scholar 

  4. B.J. Berne and J.E. Straub, Curr. Opin. Struct. Biol., 7:181 (1997).

    Article  Google Scholar 

  5. R.A. Abagyan, Eds. W.F. van Gunsteren, P.K. Weiner, and A.J. Wilkinson, Computer Simulation of Biomolecuar Systems, Theoretical and Experimental Applications, Kluwer Academic Publisher, vol. 3 pp.363–394 (1997).

    Google Scholar 

  6. H.A. Scheraga, Biophys. Chem., 59:329 (1996).

    Article  Google Scholar 

  7. M. Karplus and A. Sali, Curr. Opin. Struct. Biol., 5:58 (1995).

    Article  Google Scholar 

  8. G. Nemethy and H.A. Scheraga, FASEB J., 4:3189 (1990).

    Google Scholar 

  9. E. Demchuk, D. Bashford, and D.A. Case, Fold. Des., 2:35 (1997).

    Article  Google Scholar 

  10. B. Honig and A. Nicholls. Science, 268:1144 (1995).

    Google Scholar 

  11. Z. Li and H.A. Scheraga, Proc. Natl. Acad. Sci. U.S.A., 84:6611 (1987).

    MathSciNet  Google Scholar 

  12. R. Abagyan and P. Argos, J. Mol. Biol., 225:519 (1992).

    Article  Google Scholar 

  13. R. Abagyan and T. Totrov, J. Mol. Biol., 235:983 (1994).

    Article  Google Scholar 

  14. B. Berg, Nature, 361:708 (1993).

    Article  Google Scholar 

  15. S. Kirkpatrick, C.D. Gellatt, and M.P. Vecchi, Science, 220:671 (1983).

    MathSciNet  Google Scholar 

  16. C. Levinthal, Eds. P. Debruner, J.C.M. Tsibris, and E. Munck, Mossbauer Spectroscopy in Biological Systems, Univ. Illinois Press, pp. 22–24 (1969).

    Google Scholar 

  17. R.E. Bruccoleri and M. Karplus, Biopolymers, 26:137 (1987).

    Article  Google Scholar 

  18. T. Schaumann, W. Braun, and K. Wüthrick, Biopolymers, 29:679 (1990).

    Article  Google Scholar 

  19. M. Vásquez and H.A. Scheraga, Biopolymers, 24:1437 (1985).

    Google Scholar 

  20. S. Vajda and C. DeLisi, Biopolymers, 29:1755 (1990).

    Article  Google Scholar 

  21. I. Simon, L. Glasser, and H.A. Scheraga, Proc. Nat. Acad. Sci., U.S.A., 88:3661 (1991).

    Google Scholar 

  22. R.A. Abagyan and M.M. Totrov, J. Mol. Biol., 268:678 (1997).

    Article  Google Scholar 

  23. D. Shalloway, C.A. In Floudas, and P.M. Pardalos, Eds. Recent Advances in Global Optimization, Princeton, Vol. 1, pp. 433–648 (1991).

    Google Scholar 

  24. J. Kostrowicki and H.A. Scheraga, J. Phys. Chem., 96:7442 (1992).

    Article  Google Scholar 

  25. R.A. Abagyan, FEBS Letters, 325:17 (1993).

    Article  Google Scholar 

  26. H. Kawai, T. Kikuchi, and Y. Okamoto, Protein Eng., 3:85 (1989).

    Article  Google Scholar 

  27. S.R. Wilson and W. Cui, Biopolymers, 29:225 (1990).

    Google Scholar 

  28. J.A. McCammon, B.R. Gelin, and M. Karplus, Nature, 267:585 (1977).

    Article  Google Scholar 

  29. M. Levitt and R. Sharon, Proc. Nat. Acad. Sci., U.S.A., 85:7557 (1988).

    Google Scholar 

  30. R.E. Bruccoleri and M.A. Karplus, Biopolymers, 29:1847 (1990).

    Article  Google Scholar 

  31. M.J.D. Powell, Math. Programming, 12:241 (1997).

    MathSciNet  Google Scholar 

  32. T. Noguti and N. Go, Biopolymers, 24:527 (1985).

    Article  Google Scholar 

  33. A. Kidera, Proc. Natl. Acad. Sci. U.S.A., 92:9886 (1995).

    Google Scholar 

  34. J.K. Shin and M.S. Jhon, Biopolymers, 31:177 (1991).

    Article  Google Scholar 

  35. C. Lee and S. Subbiah, J. Mol. Biol., 217:373 (1991).

    Google Scholar 

  36. R. Unger and J. Moult, J. Mol. Biol., 231:75 (1993).

    Article  Google Scholar 

  37. J. Skolnick, A. Kolinski, and R. Yaris, Biopolymers, 28:1059 (1989).

    Article  Google Scholar 

  38. D.R. Pipoll and H.A. Scheraga, Biopolymers, 27:1283 (1988).

    Google Scholar 

  39. L. Holm and C. Sander, J. Mol. Biol., 218:183 (1991).

    Article  Google Scholar 

  40. H.S. Kang, N.A. Kurochkina, and B. Lee, J. Mol. Biol., 229:448 (1993).

    Article  Google Scholar 

  41. B. Lee, N. Kurochkina, and H.S. Kang, FASEB J., 10:119 (1996).

    Google Scholar 

  42. Purisima and Scheraga, J. Mol. Biol., 196:697 (1987).

    Article  Google Scholar 

  43. C.P. Hill, D.H. Anderson, L., Wesson, W.F. DeGrado, and D. Eisenberg, Science, 249:543 (1990).

    Google Scholar 

  44. M.S. Briggs and H. Roder, Proc. Natl. Acad. Sci. U.S.A., 89:2017 (1992).

    Google Scholar 

  45. J.P. Cox, P.A. Evans, L.C. Packman, D.H. Williams, and D.N. Woolfson, J. Mol. Biol., 234:483 (1993).

    Article  Google Scholar 

  46. B. Robson and R.H. Pain, Biochem. J., 141:869 (1975).

    Google Scholar 

  47. M.J. Rooman, J.P.A. Kocher, and S.J. Wodak, J. Mol. Biol., 221:961 (1991).

    Article  Google Scholar 

  48. R. Abagyan and T. Totrov, J. Mol. Biol., 235:983 (1994).

    Article  Google Scholar 

  49. J.W. Ponder and F.M. Richards, J. Mol. Biol., 193:775 (1987).

    Article  Google Scholar 

  50. J. Janin, S. Wodak, M. Levitt, and B. Maigret, J. Mol. Biol., 125:357 (1978).

    Article  Google Scholar 

  51. R.L. Roland and M. Karplus, J. Mol. Biol., 230:543 (1993).

    Google Scholar 

  52. M.N. Rosenbluth and A.W. Rosenbluth, J. Chem. Phys., 23:356 (1955).

    Google Scholar 

  53. D. Frenkel and B. Smit, Understanding Molecular Simulation from Algorithms to Applications, Academic Press, (1996).

    Google Scholar 

  54. R.C. Brower, G. Vasmatzis, M. Silverman, and C. DeLisi, Biopolymers, 33:329 (1993).

    Article  Google Scholar 

  55. M. Ramirez-Alvarado, F.J. Blanco, H. Niemann, and L. Serrano, J. Mol. Biol., 273:898 (1997).

    Google Scholar 

  56. M.D. Struthers, J.J. Ottesen, B. Imperiali, Fold. & Des., 3:95 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zhou, Y., Abagyan, R. (2002). Efficient Stochastic Global Optimization for Protein Structure Prediction. In: Thorpe, M.F., Duxbury, P.M. (eds) Rigidity Theory and Applications. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47089-6_19

Download citation

  • DOI: https://doi.org/10.1007/0-306-47089-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46115-6

  • Online ISBN: 978-0-306-47089-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics