Skip to main content

Microparticle Fluorescence and Energy Transfer

  • Chapter
  • 486 Accesses

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 3))

Conclusion

Morphology-dependent resonances are found in other structures of high symmetry,(48) and so their possible existence in biological systems should not be ignored. The presence of such resonances should alter the rates of decay of excited species. A considerable amount of work remains to be done on investigating the optical properties of small, regularly shaped objects. Continuing studies of fluorescence from such systems may lead to improved probes of the microscopic environment of molecules, remote sensing techniques, and surface probes to investigate both solid and liquid surfaces. The study of interactions higher intensity is almost sure to produce a host of interesting effects. The work described in this chapter will hopefully introduce a reader to the field, and we have endeavored to make the citations as current as possible in order to allow the interested reader to follow subsequent developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, Observation of structure resonances in the fluorescence of microspheres, Phys. Rev. Lett. 44, 475–478 (1980).

    Article  CAS  Google Scholar 

  2. L. M. Folan, S. Arnold, and S. D. Druger, Enhanced energy transfer within a microparticle, Chem. Phys. Lett. 118, 322–327 (1985).

    Article  CAS  Google Scholar 

  3. S. Arnold and L. M. Folan, Fluorescencespectrometer for a single electrodynamically levitated microparticle, Rev. Sci. Instrum 57, 2250–2253 (1986).

    CAS  Google Scholar 

  4. L. M. Folan and S. Arnold, Determination of molecular orientation at the surface of an aerosol particle by morphology-dependent photoselection, Opt. Lett. 13, 1–3 (1988).

    CAS  Google Scholar 

  5. D. Axelrod, Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization, Biophys. J. 26, 557–573 (1979).

    CAS  PubMed  Google Scholar 

  6. P. R. Conwell, C. K. Rushforth, R. E. Benner, and S. C. Hill, Efficient automated algorithm for the sizing of dielectric microspheres using the resonance spectrum, J. Opt. Soc. Am. A 1, 1181–1187 (1984).

    Google Scholar 

  7. G. Mie, Contributions to the optics of turbid media,especiallycolloidalsuspensions of metals, Ann. Physik 25, 377–445 (1908).

    CAS  Google Scholar 

  8. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Chapter 4, Wiley Interscience, New York (1983).

    Google Scholar 

  9. B.J. Messinger, K. Ulrich von Raben, R. K. Chang, and P. W. Barber, Local fields at the surface of noble-metal microspheres, Phys. Rev. B 24, 649–657 (1981).

    Article  CAS  Google Scholar 

  10. N. L. Thompson, H. M. McConnell, and Thomas P. Burghardt, Order in supported phospholipid monolayers detected by dichroism or fluorescence excited with polarized evanescent illumination, Biophys. J. 46, 739–747 (1984).

    CAS  PubMed  Google Scholar 

  11. S. Earnshaw, On the nature of the molecular forces which regulate the constitution of the luminiferious ether, Trans. Cambridge Phil. Soc. 7, 97–112 (1842).

    Google Scholar 

  12. S. Arnold, Spectroscopy of single levitated micron sized particles, in: Optical Effects Associated with Small Particles (P. W. Barber and R. K. Chang, eds.), World Scientific, New York (1988).

    Google Scholar 

  13. W. Nauhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, Localized visible Ba+ monoion oscillator, Phys. Rev. A 22, 1137 (1980).

    Google Scholar 

  14. S. Arnold and N. Hessel, Photoemission from single electrodynamically levitated micro-particles, Rev. Sci. Instrum. 56, 2066–2069 (1985).

    Article  CAS  Google Scholar 

  15. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11, 288–290 (1986).

    CAS  Google Scholar 

  16. A. Ashkin and J. M. Dziedzic, Optical trapping and manipulation of viruses and bacteria, Science 235, 1517–1520 (1987).

    CAS  PubMed  Google Scholar 

  17. T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, Automated single-cell manipulation and sorting by light trapping, Appl. Opt. 26, 5311–5316 (1987).

    Google Scholar 

  18. S. Arnold and L. M. Folan, Spherical void electrodynamical levitator, Rev. Sci. Instrum. 58, 1732–1735 (1987).

    Article  CAS  Google Scholar 

  19. E. L. Kyser, L. F. Collins, and N. Herbert, Design of an impulse ink jet, J. Appl. Photogr. Eng. 7, 73–79 (1981).

    Google Scholar 

  20. P. Chylek, V. Ramaswamy, A. Ashkin, and J. M. Dziedzic, Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data, Appl. Opt. 22, 2302–2307 (1983).

    Google Scholar 

  21. A. Ruaudel-Teixier and M. Vandevyver, Energy transfer in dye monomolecular layers, Thin Solid Films 68, 129–133 (1980).

    Article  CAS  Google Scholar 

  22. J. I. Gersten and A. Nitzan. Spectroscopic properties of molecules interacting with small dielectric particles, J. Chem. Phys. 75, 1139–1152 (1981).

    Article  CAS  Google Scholar 

  23. J. I. Gersten and A. Nitzan, Accelerated energy transfer between molecules near a solid particle, Chem. Phys. Lett. 104, 31–37 (1984).

    Article  CAS  Google Scholar 

  24. X. M. Hua, J. I. Gersten, and A. Nitzan, Theory of energy transfer between molecules near solid state particles, J. Chem. Phys. 83, 3650–3659 (1985).

    Article  CAS  Google Scholar 

  25. M. Kerker, D.-S. Wang, and H. Chew, Surface enhanced Raman scattering (SERS) by molecules absorbed at spherical particles: errata, Appl. Opt. 19, 4159–4174 (1980).

    CAS  Google Scholar 

  26. P. J. McNulty, H. Chew, and M. Kerker, in: Aerosol Microphysics I W. H. Marlow, ed.), Chapter 4, Springer-Verlag, New York (1980).

    Google Scholar 

  27. R. Ruppin, Decay of an excited molecule near a small metal sphere, J.Chem.Phys. 6, 1681–1684 (1982).

    Google Scholar 

  28. H. Chew, Transition rates of atoms near spherical surfaces, J. Chem. Phys. 87, 1355–1360 (1987).

    Article  CAS  Google Scholar 

  29. S. D. Druger and P. J. McNulty, Radiation pattern of fluorescence from molecules embedded in small particles: General case, Appl. Opt. 22, 75–82 (1983).

    CAS  Google Scholar 

  30. S. D. Druger, S. Arnold, and L. M. Folan, Theory of enhanced energy transfer between molecules embedded in spherical dielectric particles, J. Chem. Phys. 87, 2649–2659 (1987).

    Article  CAS  Google Scholar 

  31. R. R. Chance, A. Prock, and R. Silby, Molecular fluorescence and energy transfer near surfaces, in: Advances in Chemical Physics, Vol. XXXVII I. Prigogine and S. A. Rice, eds.), pp. 1–65, Wiley, New York (1978).

    Google Scholar 

  32. D. A. Weitz, S. Garoff, C. D. Hanson, T. J. Gramila, and J. I. Gersten, Fluorescent lifetimes of molecules on silver island films, Opt. Lett. 7, 89 (1982).

    CAS  Google Scholar 

  33. H. M. Lai, P. T. Leung, and K. Young, Electromagnetic decay rates into narrow resonances in an optical cavity, Phys. Rev. A 37, 1597 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. H.-M. Tzeng K. F. Wall, M. B. Long, and R. K. Chang, Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances Opt. Lett. 9, 499–501 (1984).

    CAS  Google Scholar 

  35. J. B. Snow, S.-X. Qian, and R. K. Chang, Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances, Opt. Lett. 10, 37–39 (1985).

    CAS  Google Scholar 

  36. S.-X. Qian, J. B. Snow, and R. K. Chang, Coherent Raman mixing and coherent anti-Stokes Raman scattering from individual micrometer-sized droplets, Opt. Lett. 10, 499–501 (1985).

    CAS  Google Scholar 

  37. S. Arnold, K. M. Leung, and A. B. Pluchino, Optical bistability of an aerosol particle, Opt. Lett. 11, 800–802 (1986).

    CAS  Google Scholar 

  38. J. R. Lakowicz, private communication.

    Google Scholar 

  39. H. Chew and D.-S. Wang, Double resonance in fluorescent and Raman scattering by molecules in small particles, Phys. Rev. Lett. 49, 490–492 (1982).

    Article  CAS  Google Scholar 

  40. T. Förster, Intermolecular energy transfer and fluorescence, Ann. Physik. 2, 55–75 (1948).

    Google Scholar 

  41. L. Dexter, Atheory of sensitized luminescence insolids J.Chem.Phys. 21, 836–850 (1953).

    Article  CAS  Google Scholar 

  42. J. Perrin, Fluorescence andmolecularinduction byresonance, C. R.Acad. Sci. 184, 1097–1100 (1927).

    CAS  Google Scholar 

  43. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transferin Condensed Matter Chapter 2, North-Holland, New York (1982).

    Google Scholar 

  44. J. B. Birks, Photophysics of Aromatic Molecules, pp. 567–576, Wiley, London (1970).

    Google Scholar 

  45. L. Stryer and R. P. Haugland, Energy transfer: a spectroscopic ruler, Proc. Natl. Acad. Sci. U.S.A. 58, 719–726 (1967).

    CAS  PubMed  Google Scholar 

  46. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Chapter 10, Plenum, New York (1983).

    Google Scholar 

  47. J.-Z. Zhang, D. H. Leach, and R. K. Chang, Photon lifetime with in a droplet: Temporal determination of elastic and stimulated Raman scattering, Opt. Lett. 13, 270–272 (1988).

    CAS  Google Scholar 

  48. P. W. Barber, J. F. Owen, and R. K. Chang, Resonant scattering for characterization of axisymmetric dielectric objects, IEEE Trans. Antennas Propagation, AP-30, 168–172 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Folan, L.M., Arnold, S. (2002). Microparticle Fluorescence and Energy Transfer. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-306-47059-4_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-47059-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43954-4

  • Online ISBN: 978-0-306-47059-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics