Skip to main content
Log in

A mathematical model of human atrioventricular nodal function incorporating concealed conduction

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This work develops a mathematical model for the atrioventricular (AV) node in the human heart, based on recordings of electrical activity in the atria (the upper chambers of the heart) and the ventricles (the lower chambers of the heart). Intracardiac recordings of the atrial and ventricular activities were recorded from one patient with atrial flutter and one with atrial fibrillation. During these arrhythmias, not all beats in the atria are conducted to the ventricles. Some are blocked (concealed). However, the blocked beats can affect the properties of the AV node. The activation times of the atrial events were regarded as inputs to a mathematical model of conduction in the AV node, including a representation of AV nodal concealment. The model output was compared to the recorded ventricular response to search for and identify the best possible parameter combinations of the model. Good agreement between the distribution of interbeat intervals in the model and data for durations of 5 min was achieved. A model of AV nodal behavior during atrial flutter and atrial fibrillation could potentially help to understand the relative roles of atrial input activity and intrinsic AV nodal properties in determining the ventricular response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amellal, F., K. Hall, L. Glass and J. Billette (1996). Alternation of atrioventricular nodal conduction time during atrioventricular reentrant tachycardia: are dual pathways necessary? J. Cardiovasc. Electrophysiol. 7, 943–951.

    Google Scholar 

  • Billette, J. and S. Nattel (1994). Dynamic behavior of the atrioventricular node: a functional model of interaction between recovery, facilitation, and fatigue. J. Cardiovasc. Electrophysiol. 5, 90–102.

    Google Scholar 

  • Bootsma, B. K., A. T. Hoelen, J. Strackee and F. L. Meijler (1970). Analysis of R-R intervals in patients with atrial fibrillation at rest and during exercise. Circulation 41, 783–794.

    Google Scholar 

  • Chorro, F. J., C. J. H. J. Kirchof, J. Brugada et al. (1990). Ventricular response during irregular atrial pacing and atrial fibrillation. Am. J. Physiol. 259, H1015–H1021.

    Google Scholar 

  • Cohen, R. J., R. D. Berger and T. E. Dushane (1983). A quantitative model for the ventricular response during atrial fibrillation. IEEE Trans. Biomed. Eng. 30, 769–781.

    Google Scholar 

  • Damato, A. N., O. J. Varghese, S. H. Lau, J. J. Gallagher and G. A. Bobb (1972). Manifest and concealed reentry. A mechanism of AV nodal Wenckebach phenomenon. Circ. Res. 30, 283–292.

    Google Scholar 

  • Decherd, G. M. and A. Ruskin (1946). The mechanism of the Wenckebach type of A-V block. Br. Heart J. 8, 6–16.

    Google Scholar 

  • Goldstein, R. E. and G. O. Barnett (1967). A statistical study of the ventricular irregularity of atrial fibrillation. Comput. Biomed. Res. 1, 146.

    Article  Google Scholar 

  • Hashida, E., N. Yoshitani and T. Tasaki (1978). A study on the irregularity of the sequence of R-R intervals in chronic atrial fibrillation in man based on the time series analysis and the information theory. Jpn. Heart J. 19, 839–851.

    Google Scholar 

  • Heethaar, R. M., J. J. D. van Der Gon and F. L. Meijler (1973a). Mathematical model of AV conduction in the rat heart. Cardiovasc. Res. 7, 105–114.

    Google Scholar 

  • Heethaar, R. M., R. M. De Vos Burchart, J. J. D. van Der Gon and F. L. Meijler (1973b). A mathematical model of AV conduction in the rat heart. II. Quantification of concealed conduction. Cardiovasc. Res. 7, 542–556.

    Article  Google Scholar 

  • Lammers, W. J. E. P., F. Ravelli, M. Disertori, R. Antolini, F. Furlanello and M. A. Allessie (1991). Variations in human atrial flutter cycle length induced by ventricular beats: evidence of a reentrant circuit with a partially excitable gap. J. Cardiovasc. Electrophysiol. 2, 375–387.

    Google Scholar 

  • Langendorf, R. (1948). Concealed A-V conduction: the effect of blocked impulses on the formation and conduction of subsequent impulses. Am. Heart J. 35, 542–552.

    Article  Google Scholar 

  • Lewis, T. and A. M. Master (1925). Observations upon conduction in the mammalian heart. A-V conduction. Heart 12, 209–269.

    Google Scholar 

  • Meijler, F. L., J. Jalife, J. Beaumont and D. Vaidya (1996). AV nodal function during atrial fibrillation: the role of electrotonic modulation of propagation. J. Cardiovasc. Electrophysiol. 7, 843–861.

    Google Scholar 

  • Meijler, F. L., J. Stackee, F. J. L. van Capelle and J. du Perron (1968). Computer analysis of the RR interval-contractility relationship during random stimulation of the isolated heart. Circ. Res. 22, 695–702.

    Google Scholar 

  • Moe, G. K. and J. A. Abildskov (1964). Observations on the ventricular dysrhythmia associated with atrial fibrillation in the dog heart. Circ. Res. 14, 447–460.

    Google Scholar 

  • Pavri, B. B., D. Kocovic and M. Hanna (1999). Long-short RR intervals and the right bundle branch. J. Cardiovasc. Electrophysiol. 10, 121–123.

    Google Scholar 

  • Pick, A. and R. Langendorf (1979). Interpretation of Complex Arrhythmias, Philadelphia: Lea & Febiger.

    Google Scholar 

  • Press, W. H., S. T. Teukolsky, W. T. Vetterling and B. P. Flannery (1993). Numerical Recipes in C: The Art of Scientific Computing, Cambridge: Cambridge University Press. Also see: http://www.ulib.org/webRoot/Books/Numerical-Recipes/bookcpdf.html.

    Google Scholar 

  • Ravelli, F., M. Disertori, F. Gozzi, R. Antolini and M. A. Allessie (1994). Characterization of atrial flutter. Studies in man after open heart surgery using fixed atrial electrodes. Circulation 89, 2107–2116.

    Google Scholar 

  • Shrier, A., H. Dubarsky, M. Rosengarten, M. R. Guevara, S. Nattel and L. Glass (1987). Prediction of complex atrioventricular conduction rhythms in humans with use of the recovery curve. Circulation 76, 1196–1205.

    Google Scholar 

  • Stackee, J., A. J. Hoelen, N. E. Zimmerman and F. L. Meijler (1971). Artificial atrial fibrillation in the dog. An artifact? Circ. Res. 28, 441–445.

    Google Scholar 

  • Stambler, B. S. and K. A. Ellenbogen (1996). Elucidating the mechanisms of atrial flutter cycle length variability using power spectral analysis techniques. Circulation 94, 2515–2525.

    Google Scholar 

  • Sun, J., F. Amellal, L. Glass and J. Billette (1995). Alternans and period-doubling bifurcations in atrioventricular nodal conduction. J. Theor. Biol. 173, 79–91.

    Article  Google Scholar 

  • Talajic M., D. Papadatos, C. Villemaire, L. Glass and S. Nattel (1991). A unified model of atrioventricular nodal conduction predicts dynamic changes inWenckebach periodicity. Circ. Res. 68, 1280–1293.

    Google Scholar 

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: heart rate variability (1993). Standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065.

    Google Scholar 

  • van Capelle, F. J. L., J. C. du Perron and D. Durrer (1971). Atrioventricular conduction in isolated rat heart. Am. J. Physiol. 221, 284–290.

    Google Scholar 

  • Waxman, M. B., L. Yao, D. A. Cameron and J. A. Kirsh (1991). Effects of posture, valsalva maneuver and respiration on atrial flutter rate: an effect mediated through cardiac volume. J. Am. Coll. Cardiol. 17, 1545–1552.

    Article  Google Scholar 

  • Wells, J. L., W. A. H. MacLean, T. N. James and A. L. Waldo (1979). Characterization of atrial flutter. Studies in man after open heart surgery using fixed atrial electrodes. Circulation 60, 665–673.

    Google Scholar 

  • Zeng, W. and L. Glass (1996). Statistical properties of heartbeat intervals during atrial fibrillation. Phys. Rev. E 54, 1779–1784.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Glass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jørgensen, P., Schäfer, C., Guerra, P.G. et al. A mathematical model of human atrioventricular nodal function incorporating concealed conduction. Bull. Math. Biol. 64, 1083–1099 (2002). https://doi.org/10.1006/bulm.2002.0313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0313

Keywords

Navigation