Skip to main content
Log in

The cleavage plane will bend when one aster of the mitotic apparatus stops growing in compressed sea urchin eggs

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Astral microtubules are elongated greatly during anaphase and telophase in sea urchin eggs. The surface density of microtubules reaching the cell surface can be defined at each surface point. Gradients of the surface-density function were assumed to drive membrane proteins whose accumulation causes the formation of contractile-ring microfilaments. An equation was constructed to calculate the movements of the membrane proteins on a curved surface. The equation was applied to eggs compressed between a coverslip and a glass slide by regarding the egg shape as an oblate spheroid. The simulations explained the observations that contractile-ring microfilaments locally appeared and then developed into a complete ring in compressed eggs. When one aster in the mitotic apparatus stopped growing during anaphase, the equation predicted that the zone of contractile-ring microfilaments is displaced toward the inactivated aster, curves in the view from above and tapers off toward the cell edge. The curve gets sharper as eggs are compressed more greatly and as microtubules from the growing aster penetrate more deeply into the opposite hemisphere. The predictions were compared with the observations by Ishii and Shimizu in 1995 and by Hamaguchi in 1998 regarding the furrow formation by the asymmetric mitotic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asnes, C. F. and T. E. Schroeder (1979). Cell cleavage: ultrastructural evidence against equatorial stimulation by aster microtubules. Exp. Cell. Res. 122, 327.

    Article  Google Scholar 

  • Bonaccorsi, S., M. G. Giansanti and M. Gatti (1998). Spindle self-organization and cytokinesis during male meiosis in asterless mutants of Drosophila melanogaster. J. Cell Biol. 142, 751.

    Article  Google Scholar 

  • Cao, L. G. and Y. L. Wang (1996). Signals from the spindle midzone are required for the stimulation of cytokinesis in cultured epithelial cells. Mol. Biol. Cell. 7, 225.

    Google Scholar 

  • DeBiasio, R. L., G. M. LaRocca, P. L. Post and D. L. Taylor (1996). Myosin II transport, organization, and phosphorylation: evidence for cortical flow/solation-contraction coupling during cytokinesis and cell locomotion. Mol. Biol. Cell. 7, 1259.

    Google Scholar 

  • DeLozanne, A. and J. A. Spudich (1987). Disruption of the Dictyostelium discoidium myosin heavy chain gene by homologous recombination. Science 236, 1086.

    Google Scholar 

  • Devore, J. J., G. W. Conrad and R. Rappaport (1989). A model for astral stimulation of cytokinesis in animal cells. J. Cell Biol. 109, 2225.

    Article  Google Scholar 

  • Dictus, W. J. A. G., E. J. J. van Zoelen, P. A. T. Tetteroo, L. G. J. Tertoolen, S. W. deLaat and J. G. Bluemink (1984). Lateral mobility of plasma membrane lipids in Xenopus eggs: regional differences related to animal/vegetal polarity become extreme upon fertilization. Dev. Biol. 101, 201.

    Article  Google Scholar 

  • Eckley, D. M., A. M. Ainsztein, A. M. Mackay, I. G. Goldberg and W. C. Earnshaw (1997). Chromosomal proteins and cytokinesis: patterns of cleavage furrow formation and inner centromere protein positioning in mitotic heterokaryons and mid-anaphase cells. J. Cell Biol. 136, 1169.

    Article  Google Scholar 

  • Hamaguchi, Y (1998). Displacement of cleavage plane in the sea urchin egg by locally applied taxol. Cell Motil. Cytoskeleton 40, 211.

    Article  Google Scholar 

  • Harris, A. K. and S. L. Gewalt (1989). Simulation testing of mechanisms for inducing the formation of the contractile ring in cytokinesis. J. Cell Biol. 109, 2215.

    Article  Google Scholar 

  • Henson, J. H., D. A. Begg, S. M. Beaulieu, D. J. Fishkind, E. M. Bonder, M. Terasaki, D. Lebeche and B. Kaminer (1989). A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo. J. Cell Biol. 109, 149.

    Article  Google Scholar 

  • Ishii, R. and T. Shimizu (1995). Unequal first cleavage in the Tubifex egg: involvement of a monastral mitotic apparatus. Dev. Growth Differ. 37, 687.

    Article  Google Scholar 

  • Jacobson, K., A. Ishihara and R. Inman (1987). Lateral diffusion of proteins in membranes. Ann. Rev. Physiol. 49, 163.

    Article  Google Scholar 

  • Kaltschmidt, J. A., C. M. Davidson, N. H. Brown and A. H. Brand (2000). Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat. Cell Biol. 2, 7.

    Article  Google Scholar 

  • Knecht, D. A. and W. F. Loomis (1987). Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoidium. Science 236, 1081.

    Google Scholar 

  • Koppel, D. E., J. M. Oliver and R. D. Berlin (1982). Surface functions during mitosis. III. quantitative analysis of ligand-receptor movement into the cleavage furrow: diffusion vs. flow. J. Cell Biol. 93, 950.

    Article  Google Scholar 

  • Mabuchi, I (1994). Cleavage furrow: timing of emergence of contractile ring actin filaments and establishment of the contractile ring by filament bundling in sea urchin eggs. J. Cell Sci. 107, 1853.

    Google Scholar 

  • Mabuchi, I. and M. Okuno (1977). The effect of myosin antibody on the division of starfish blastomeres. J. Cell Biol. 74, 251.

    Article  Google Scholar 

  • Mabuchi, I., Y. Hamaguchi, H. Fujimoto, N. Morii, M. Mishima and S. Narumiya (1993). A rho-like protein is involved in the organisation of the contractile ring in dividing sand dollar eggs. Zygote 1, 325.

    Article  Google Scholar 

  • Matsumura, F., S. Ono, Y. Yamakita, G. Totsukawa and S. Yamashiro (1998). Specific localization of serine 19 phosphorylated myosin II during cell locomotion and mitosis of cultured cells. J. Cell Biol. 140, 119.

    Article  Google Scholar 

  • Nishimura, Y., K. Nakano and I. Mabuchi (1998). Localization of Rho GTPase in sea urchin eggs. FEBS Lett. 441, 121.

    Article  Google Scholar 

  • O’Connell, C. B., S. P. Wheatley, S. Ahmed and Y.-L. Wang (1999). The small GTP-binding protein Rho regulates cortical activities in cultured cells during division. J. Cell Biol. 144, 305.

    Article  Google Scholar 

  • Rappaport, R. (1961). Experiments concerning the cleavage stimulus in sand dollar eggs. J. Exp. Zool. 148, 81.

    Article  Google Scholar 

  • Rappaport, R. (1985). Repeated furrow formation from a single mitotic apparatus in cylindrical sand dollar eggs. J. Exp. Zool. 234, 167.

    Article  Google Scholar 

  • Rappaport, R. (1986). Establishment of the mechanism of cytokinesis in animal cells. Int. Rev. Cytol. 105, 245.

    Article  Google Scholar 

  • Rappaport, R. (1997). Cleavage furrow establishment by the moving mitotic apparatus. Dev. Growth Differ. 39, 221.

    Article  Google Scholar 

  • Rappaport, R. and B. N. Rappaport (1985). Surface contractile activity associated with isolated asters in cylindrical sand dollar eggs. J. Exp. Zool. 235, 217.

    Article  Google Scholar 

  • Rappaport, R. and B. N. Rappaport (1994). Cleavage in conical sand dollar eggs. Dev. Biol. 164, 258.

    Article  Google Scholar 

  • Rieder, C. L., A. Khodjakov, L. V. Paliulis, T. M. Fortier, R. W. Cole and G. Sluder (1997). Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc. Natl. Acad. Sci. USA 94, 5107.

    Article  Google Scholar 

  • Sanger, J. M., J. S. Dome and J. W. Sanger (1998). Unusual cleavage furrows in vertebrate tissue culture cells: insights into the mechanisms of cytokinesis. Cell Motil. Cytoskeleton 39, 95.

    Article  Google Scholar 

  • Savoian, M. S., W. C. Earnshaw, A. Khodjakov and C. L. Rieder (1999). Cleavage furrows formed between centrosomes lacking an intervening spindle and chromosomes contain microtubule bundles, INCENP, and CHO1 but Not CENP-E. Mol. Biol. Cell 10, 297.

    Google Scholar 

  • Straight, A. F. and C. M. Field (2000). Microtubules, membranes and cytokinesis. Curr. Biol. 10, R760.

    Article  Google Scholar 

  • Verde, F., M. Dogterom, E. Stelzer, E. Karsenti and S. Leibler (1992). Control of microtubule dynamics and length by cyclin A-and cyclin B-dependent kinases in Xenopus egg extract. J. Cell Biol. 118, 1097.

    Article  Google Scholar 

  • Wang, Y. L., J. D. Silverman and L. G. Cao (1994). Single particle tracking of surface receptor movement during cell division. J. Cell Biol. 127, 963.

    Article  Google Scholar 

  • Weber, I., G. Gerisch, C. Heizer, J. Murphy, K. Badelt, A. Stock, J. M. Schwartz and J. Faix (1999). Cytokinesis mediated through the recruitment of cortexillins into the cleavage furrow. EMBO J. 18, 586.

    Article  Google Scholar 

  • Wheatley, S. P. and Y. L. Wang (1996). Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells. J. Cell Biol. 135, 981.

    Article  Google Scholar 

  • White, J. G. and G. G. Borisy (1983). On the mechanisms of cytokinesis in animal cells. J. Theor. Biol. 101, 289.

    Article  Google Scholar 

  • Yoshigaki, T (1997). Accumulation of WGA receptors in the cleavage furrow during cytokinesis of sea urchin eggs. Exp. Cell Res. 236, 463.

    Article  Google Scholar 

  • Yoshigaki, T (1999). Simulation of density gradients of astral microtubules at cell surface in cytokinesis of sea urchin eggs. J. Theor. Biol. 196, 211.

    Article  Google Scholar 

  • Yoshigaki, T. (2001). Simulation of the mechanism of determining the position of the cleavage furrow in cytokinesis of sea urchin eggs. Math. Biosci. 170, 17.

    Article  MATH  MathSciNet  Google Scholar 

  • Yumura, S. and T. Q. P. Uyeda (1997). Transport of myosin II to the equatorial region without its own motor activity in mitotic Dictyostelium cells. Mol. Biol. Cell 8, 2089.

    Google Scholar 

  • Zhang, J. H. and J. Spudich (1998). Myosin II localization during cytokinesis occurs by a mechanism that does not require its motor domain. Proc. Natl. Acad. Sci. USA 95, 13652.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshigaki, T. The cleavage plane will bend when one aster of the mitotic apparatus stops growing in compressed sea urchin eggs. Bull. Math. Biol. 64, 643–672 (2002). https://doi.org/10.1006/bulm.2002.0298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2002.0298

Keywords

Navigation