Skip to main content
Log in

Adaptive evolution on neutral networks

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the evolution of large but finite asexual populations evolving in fitness landscapes in which all mutations are either neutral or strongly deleterious. We demonstrate that despite the absence of higher fitness genotypes, adaptation takes place as regions with more advantageous distributions of neutral genotypes are discovered. Since these discoveries are typically rare events, the population dynamics can be subdivided into separate epochs, with rapid transitions between them. Within one epoch, the average fitness in the population is approximately constant. The transitions between epochs, however, are generally accompanied by a significant increase in the average fitness. We verify our theoretical considerations with two analytically tractable bitstring models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adami, C. (1995). Self-organized critically in living systems. Phys. Lett. A 203, 29–32.

    Article  Google Scholar 

  • Charlesworth, B. (1990). Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res. Camb. 55, 199–221.

    Google Scholar 

  • Crow, J. F. (1970). Genetic loads and the cost of natural selection, in Mathematical Topics in Population Genetics, K. Kojima (Ed.), Berlin: Springer-Verlag, pp. 128–177.

    Google Scholar 

  • Derrida, B. and L. Peliti (1991). Evolution in a flat fitness landscape. Bull. Math. Biol. 53, 355–382.

    Article  MATH  Google Scholar 

  • Dress, A. W. M. and D. S. Rumschitzki (1988). Evolution on sequence space and tensor products of representation spaces. Acta Applicandae Mathematicae 11, 103–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Eigen, M., J. McCaskill and P. Schuster (1988). Molecular quasi-species. J. Phys. Chem. 92, 6881–6891.

    Article  Google Scholar 

  • Eigen, M., J. McCaskill and P. Schuster (1989). The molecular quasi-species. Adv. Chem. Phys. 75, 149–263.

    Google Scholar 

  • Eigen, M. and P. Schuster (1979). The Hypercycle—A Principle of Natural Self-Organization, Berlin: Springer-Verlag.

    Google Scholar 

  • Eldredge, N. and S. J. Gould (1972). Punctuated equilibria: and alternative to phyletic gradualism, in Models in Paleobiology, T. J. M. Schopf (Ed.), San Francisco: Freeman, pp. 82–115.

    Google Scholar 

  • Elena, S. F., V. S. Cooper and R. E. Lenski (1996). Punctuated evolution caused by selection of rare beneficial mutations. Science 272, 1802–1804.

    Google Scholar 

  • Fontana, W. and P. Schuster (1998). Continuity in evolution: on the nature of transitions. Nature 280, 1451–1455.

    Google Scholar 

  • Forst, C. V., C. Reidys and J. Weber (1995). Evolutionary dynamics and optimization: Neutral Networks as model-landscape for RNA secondary-structure folding-landscapes, in Advances in Artificial Life, 929 of Lecture Notes in Artificial Intelligence, F. Morán, A. Moreno, J. J. Merelo and P. Chacón (Eds), pp. 128–147.

  • Gavrilets, S. (1997). Evolution and speciation on holey adaptive landscapes. TREE 12, 307–312.

    Google Scholar 

  • Gavrilets, S. (1999). A dynamical theory of speciation on holey adaptive landscapes. Am. Nat. 154, 1–22.

    Article  Google Scholar 

  • Gould, S. J. and N. Eldredge (1977). Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3, 115–151.

    Google Scholar 

  • Haldane, J. B. S. (1927). A mathematical theory of natural and artificial selection. Part V: Selection and mutation. Proc. Camp. Phil. Soc. 23, 838–844.

    Article  MATH  Google Scholar 

  • Haldane, J. B. S. (1937). The effect of variation on fitness. Am. Nat. 71, 337–349.

    Article  Google Scholar 

  • Huynen, M. A., P. F. Stadler and W. Fontana (1996). Smoothness within ruggedness: The role of neutrality in adaptation. Proc. Natl. Acad. Sci. USA 93, 397–401.

    Article  Google Scholar 

  • Kimura, M. (1964). Diffusion models in population genetics. J. Appl. Prob. 1, 177–232.

    Article  MATH  Google Scholar 

  • Kimura, M. and T. Maruyama (1966). The mutational load with epistatic gene interactions in fitness. Genetics 54, 1337–1351.

    Google Scholar 

  • Kondrashov, A. S. (1988). Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440.

    Article  Google Scholar 

  • Lenski, R. E. and M. Travisano (1994). Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Natl Acad. Sci. USA 91, 6808–6814.

    Article  Google Scholar 

  • Muller, H. J. (1950). Our load of mutations. Am. J. Hum. Genet. 2, 111–176.

    Google Scholar 

  • Nowak, M. A. (1992). What is a quasispecies? TREE 7, 118–121.

    Google Scholar 

  • Ofria, C., C. Adami and T. C. Collier (2000). Selective pressures on genomes in evolution, unpublished.

  • Rumschitzki, D. S. (1987). Spectral properties of Eigen evolution matrices. J. Math. Biol. 24, 667–680.

    MATH  MathSciNet  Google Scholar 

  • Schuster, P. and J. Swetina (1988). Stationary mutant distributions and evolutionary optimization. Bull. Math. Biol. 50, 635–660.

    Article  MathSciNet  MATH  Google Scholar 

  • Swetina, J. and P. Schuster (1982). Self-replication with errors: a model for polynucleotide replication. Biophys. Chem. 16, 329–345.

    Article  Google Scholar 

  • van Nimwegen, E. and J. P. Crutchfield (2000a). Metastable evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths? Bull. Math. Biol. 62, 799–848.

    Article  Google Scholar 

  • van Nimwegen, E. and J. P. Crutchfield (2000b). Optimizing epochal evolutionary search: population-size independent theory. Comput. Methods. Appl. Mech. Eng. 186, 171–194.

    Article  MATH  Google Scholar 

  • van Nimwegen, E., J. P. Crutchfield and M. Huynen (1999a). Neutral evolution of mutational robustness. Proc. Natl Acad. Sci. USA 96, 9716–9720.

    Article  Google Scholar 

  • van Nimwegen, E., J. P. Crutchfield and M. Mitchell (1997). Finite populations induce metastability in evolutionary search. Phys. Lett. 229, 144–150.

    Article  MathSciNet  MATH  Google Scholar 

  • van Nimwegen, E., J. P. Crutchfield and M. Mitchell (1999b). Statistical dynamics of the royal road genetic algorithm. Theor. Comput. Sci. 229, 41–102.

    Article  MATH  Google Scholar 

  • Vose, M. D. and G. E. Liepins (1991). Punctuated equilibria in genetic search. Complex Syst. 5, 31–44.

    MathSciNet  MATH  Google Scholar 

  • Wilke, C. O. (1999). Evolutionary dynamics in time-dependent environments, PhD thesis, Ruhr-Universität Bochum, Aachen: Shaker-Verlag.

    Google Scholar 

  • Wilke, C. O. and C. Adami (2001). Interaction between directional epistasis and average mutational effects. Proc. R. Soc. London B, in press.

  • Wilke, C. O., C. Ronnewinkel and T. Martinetz (2001). Dynamic fitness landscapes in molecular evolution. Phys. Rep., in press.

  • Wilke, C. O., J. L. Wang, C. Ofria, R. E. Lenski and C. Adami (2001). Evolution of digital organisms at high mutation rate leads to survival of the flattest. Nature, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilke, C.O. Adaptive evolution on neutral networks. Bull. Math. Biol. 63, 715–730 (2001). https://doi.org/10.1006/bulm.2001.0244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0244

Keywords

Navigation