Skip to main content
Log in

Dynamics of autocatalytic replicator networks based on higher-order ligation reactions

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A class of autocatalytic reaction networks based on template-dependent ligation and higher-order catalysis is analysed. Apart from an irreversible ligation reaction we consider only reversible aggregation steps that provide a realistic description of molecular recognition. The overall dynamics can be understood by means of replicator equations with highly non-linear interaction functions. The dynamics depends crucially on the total concentration c 0 of replicating material.

For small c 0, in the hyperbolic growth regime, we recover the familiar dynamics of second-order replicator equations with its wealth of complex dynamics ranging from multi-stability to periodic and strange attractors as well as to heteroclinic orbits. For large c 0, in the parabolic growth regime, product inhibition becomes dominating and we observe a single globally stable equilibrium tantamount to permanent coexistence. In an intermediate parameter range we sometimes observe a behavior that is reminiscent of ’survival of the fittest’. Independently replicating species (Schlögl’s model) and the hypercycle are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartel, D. P. and J. W. Szostak (1993). Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418.

    Google Scholar 

  • Borghans, J. A. M., R. J. de Boer and L. A. Segel (1996). Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63.

    Article  Google Scholar 

  • Cech, T. R. (1983). RNA splicing: Three themes with variations. Cell 34, 713–716.

    Article  Google Scholar 

  • Eigen, M. (1971). Selforganization of matter and the evolution of macromolecules. Naturwiss. 58, 465–523.

    Article  Google Scholar 

  • Eigen, M., J. S. McCaskill and P. Schuster (1989). The molecular quasi-species. Adv. Chem. Phys. 75, 149–263.

    Google Scholar 

  • Eigen, M. and P. Schuster (1978). The hypercycle: B. The abstract hypercycle. Naturwiss. 65, 7–41.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster (1979). The Hypercycle, New York, Berlin: Springer-Verlag.

    Google Scholar 

  • Ekland, E. H. and D. P. Bartel (1996). RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature 382, 373–376.

    Article  Google Scholar 

  • Ekland, E. H., J. W. Szostak and D. P. Bartel (1995). Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269, 364–370.

    Google Scholar 

  • Fox, S. W. and H. Dose (1977). Molecular Evolution and the Origin of Life, New York: Academic Press.

    Google Scholar 

  • Gesteland, R. F. and J. F. Atkins (Eds) (1993). The RNA World, Plainview, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Gilbert, W. (1986). The RNA world. Nature 319, 618.

    Article  Google Scholar 

  • Guerrier-Takada, C., K. Gardiner, T. Marsh, N. Pace and S. Altman (1983). The RNA moiety of Ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857.

    Article  Google Scholar 

  • Happel, R. and P. F. Stadler (1998). The evolution of diversity in replicator networks. J. Theor. Biol. 195, 329–338.

    Article  Google Scholar 

  • Happel, R. and P. F. Stadler (1999). Autocatalytic replication in a CSTR and constant organization. J. Math. Biol. 38, 422–434.

    Article  MathSciNet  Google Scholar 

  • Hecht, R., R. Happel, P. Schuster and P. F. Stadler (1997). Autocatalytic networks with intermediates I: Irreversible reactions. Math. Biosci. 140, 33–74.

    Article  MathSciNet  Google Scholar 

  • Hirsch, M. W. and S. Smale (1974). Differential Equations, Dynamical Systems and Linear Algebra, New York: Academic Press.

    Google Scholar 

  • Hofbauer, J., P. Schuster and K. Sigmund (1981). Competition and cooperation in catalytic selfreplication. J. Math. Biol. 11, 155–168.

    Article  MathSciNet  Google Scholar 

  • Hofbauer, J. and K. Sigmund (1988). Dynamical Systems and the Theory of Evolution, Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Hutson, V. and K. Schmitt (1992). Permanence and the dynamics of biological systems. Math. Biosci. 111, 1–71.

    Article  MathSciNet  Google Scholar 

  • James, K. D. and A. D. Ellington (1999). The fidelity of template-directed oligonucleotide ligation and the inevitability of polymerase function. Orig. Life Evol. Biosph. 29, 375–390.

    Article  Google Scholar 

  • Joyce, G. F. (1991). The rise and fall of the RNA world. New Biol. 3, 399–407.

    Google Scholar 

  • Lee, D. H., J. R. Granja, J. A. Martinez, K. Severin and M. R. Ghadiri (1996). A self-replicating peptide. Nature 382, 525–528.

    Article  Google Scholar 

  • Lee, D. H., K. Severin and M. R. Ghadiri (1997). Autocatalytic networks: the transition from molecular self-replication to ecosystems. Curr. Opin. Chem. Biol. 1, 491–496.

    Article  Google Scholar 

  • Lee, D. H., K. Severin and M. R. Ghadiri (1998). Dynamic error correction in autocatalytic peptide networks. Angew. Chem., Int. Ed. Engl. 37, 126–128.

    Article  Google Scholar 

  • Lee, D. H., K. Severin, Y. Yokobayashi and M. R. Ghadiri (1997b). Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature 390, 591–594.

    Article  Google Scholar 

  • Mason, S. F. (1991). Chemical Evolution. Origin of the Elements, Molecules, and Living Systems, Oxford, U.K.: Clarendon Press.

    Google Scholar 

  • McCaskill, J. S. (1997). Spatially resolved in vitro molecular ecology. Biophys. Chem. 66, 145–1 58.

    Article  Google Scholar 

  • Novick, J. S., Q. Feng and T. Tjivikua (1991). Kinetic studies and modeling of a self-replicating system. J. Am. Chem. Soc. 113, 8831–8838.

    Article  Google Scholar 

  • Orgel, L. E. (1986). RNA catalysis and the origin of life. J. Theor. Biol. 123, 127–149.

    Google Scholar 

  • Orgel, L. E. (1987). Evolution of the genetic apparatus. A review. Cold Spring Harb. Symp. Quant. Biol. 52, 9–16.

    Google Scholar 

  • Orgel, L. E. (1992). Molecular replication. Nature 358, 203–209.

    Article  Google Scholar 

  • Schlögl, F. (1972). Chemical reaction models for non-equilibrium phase transitions. Z. Phys. 253, 147–161.

    Article  Google Scholar 

  • Schuster, P. and K. Sigmund (1983). Replicator dynamics. J. Theor. Biol. 100, 533–538.

    Article  MathSciNet  Google Scholar 

  • Schuster, P., K. Sigmund and R. Wolff (1977). Dynamical systems under constant organization I: Topological analysis of a family on non-linear differential equations—A model for catalytic hypercycles. Bull. Math. Biol. 40, 743–769.

    Article  MathSciNet  Google Scholar 

  • Schuster, P. and P. F. Stadler (1998). Nature and evolution of early replicons, in Origin and Evolution of Viruses, E. Domingo, R. Webster and J. Holland (Eds), London, U.K.: Academic Press, pp. 1–24.

    Google Scholar 

  • Schwartz, A. W. (1997). Speculation on the RNA precursor problem. J. Theor. Biol. 187, 523–527.

    Article  Google Scholar 

  • Sedaghat, H. (1997). General permanence conditions for nonlinear difference equations of higher order. J. Math. Anal. Appl. 213, 496–510.

    Article  MATH  MathSciNet  Google Scholar 

  • Segel, L. A. and M. Slemrod (1989). The quasi-steady state assumption: a case study in perturbation. SIAM Rev. 31, 446–477.

    Article  MathSciNet  Google Scholar 

  • Sievers, D. and G. von Kiedrowski (1994). Self-replication of complementary nucleotide-based oligomers. Nature 369, 221–224.

    Article  Google Scholar 

  • Stadler, P. F., W. Fontana and J. H. Miller (1993). Random catalytic reaction networks. Physica D 63, 378–392.

    Article  MathSciNet  Google Scholar 

  • Stadler, P. F. and R. Happel (1993). The probability for permanence. Math. Biosci. 113, 25–50.

    Article  Google Scholar 

  • Stadler, P. F. and P. Schuster (1992). Mutation in autocatalytic networks—an analysis based on perturbation theory. J. Math. Biol. 30, 597–631.

    Article  MathSciNet  Google Scholar 

  • Szathmáry, E. and I. Gladkih (1989). Sub-exponential growth and coexistence of nonenzymatically replicating templates. J. Theor. Biol. 138, 55–58.

    Google Scholar 

  • Tjivikua, T., P. Ballester and J. Rebek Jr. (1990). A self-replicating system. J. Am. Chem. Soc. 112, 1249–1250.

    Article  Google Scholar 

  • Uhlenbeck, O. C. (1987). A small catalytic oligoribonucleotide. Nature 328, 596–600.

    Article  Google Scholar 

  • von Kiedrowski, G. (1986). A self-replicating hexadeoxynucleotide. Angew. Chem., Int. Ed. Engl. 25, 932–935.

    Article  Google Scholar 

  • von Kiedrowski, G. (1993). Minimal replicator theory I: Parabolic versus exponential growth, in Bioorganic Chemistry Frontiers, Vol. 3, Berlin, Heidelberg: Springer-Verlag, pp. 115–146.

    Google Scholar 

  • von Kiedrowski, G., B. Wlotzka and J. Helbing (1989). Sequence dependence of template-directed syntheses of hexadeoxynucleotide derivatives with 3′–5′ pyrophosphate linkage. J. Angew. Chem., Int. Ed. Engl. 28, 1235–1237.

    Article  Google Scholar 

  • von Kiedrowski, G., B. Wlotzka, J. Helbing, M. Matzen and S. Jordan (1991). Parabolic growth of a hexadeoxynucleotide analogue bearing a 3′–5′-phosphoamidate link. J. Angew. Chem. Int. Edn. engl. 30, 423–426, and 892.

    Article  Google Scholar 

  • Wills, P. R., S. A. Kauffman, B. M. R. Stadler and P. F. Stadler (1998). Selection dynamics in autocatalytic systems: Templates replicating through binary ligation. Bull. Math. Biol. 60, 1073–1098.

    Article  Google Scholar 

  • Wlotzka, B. and J. S. McCaskill (1997). A molecular predator and its prey: Coupled isothermal amplification of nucleic acids. Chem. Biol. 4, 25–33.

    Article  Google Scholar 

  • Yao, S., I. Ghosh, R. Zutshi and J. Chmielewski (1998). Selective amplification by auto-and cross-catalysis in a replicating peptide system. Nature 396, 447–450.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Stadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, B.M.R., Stadler, P.F. & Schuster, P. Dynamics of autocatalytic replicator networks based on higher-order ligation reactions. Bull. Math. Biol. 62, 1061–1086 (2000). https://doi.org/10.1006/bulm.2000.0194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0194

Keywords

Navigation