Skip to main content
Log in

Numerical simulation of flow fields and particle trajectories in ciliary suspension feeding

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A model describing the ciliary driven flow and motion of suspended particles in downstream suspension feeders is developed. The quasi-steady Stokes equations for creeping flow are solved numerically in an unbounded fluid domain around cylindrical bodies using a boundary integral formulation. The time-dependent flow is approximated with a continuous sequence of steady state creeping flow fields, where metachronously beating ciliary bands are modelled by linear combinations of singularity solutions to the Stokes equations. Generally, the computed flow fields can be divided into an unsteady region close to the driving ciliary bands and a steady region covering the remaining fluid domain. The size of the unsteady region appears to be comparable to the metachronal wavelength of the ciliary band. A systematic investigation is performed of trajectories of infinitely small (fluid) particles in the simulated unsteady ciliary driven flow. A fraction of particles appear to follow trajectories, that resemble experimentally observed particle capture events in the downstream feeding system of the polycheate Sabella penicillus, indicating that particles can be captured by ciliary systems without mechanical contact between particle and cilia. A local capture efficiency is defined and its value computed for various values of beat frequencies and other parameters. The results indicate that the simulated particle capture process is most effective when the flow field oscillates within timescales comparable to transit timescales of suspended particles passing the unsteady region near the ciliary bands. However, the computed retention efficiencies are found to be much lower than those obtained experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aref, H. and S. Balachandar (1986). Chaotic advection in a stokes flow. Phys. Fluids 29, 3515–3521.

    Article  MathSciNet  MATH  Google Scholar 

  • Blake, J. R. (1972). A model for the micro-structure in ciliated organisms. J. Fluid Mech. 55, 1–23.

    Article  MATH  Google Scholar 

  • Blake, J. R. (1973). A finite model for ciliated micro-organisms. J. BioMech. 6, 133–140.

    Article  MathSciNet  Google Scholar 

  • Blake, J. R. and C. R. Fulford (1984). Mechanics of muco-ciliary transport. Phys. Chem. Hydrodyn. 5, 401–411.

    Google Scholar 

  • Blake, J. R., N. Liron and G. K. Aldis (1982). Flow pattern around ciliated micro organisms and ciliated ducts. J. Theo. Biol. 98, 127–141.

    Article  MathSciNet  Google Scholar 

  • Brennen, C. and H. Winet (1977). Fluid mechanics of propulsion by cilia and flagella. Ann. Rev. Fluid. Mech. 9, 339–398.

    Article  Google Scholar 

  • Fehlberg, E. (1970). Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnungmit Schrittweiten-Kontrolle und ihre Anvendung auf Wärmeleitungsprobleme. Computing 6, 61–71.

    Article  MATH  MathSciNet  Google Scholar 

  • Goren, S. L. and M. E. O’Niell (1971). On the hyfrodynamic resistance to a particle of a dilute suspension when in the neighbourhood of a large obstacle. Chem. Engng. Sci. 26, 325–338.

    Article  Google Scholar 

  • Gueron, S. and K. L. Gurewich (1998). Computation of the internal forces in cilia: application to ciliary motion, the effect of viscosity, and the cilia interactions. Biophys. J. 74, 1658–1676.

    Article  Google Scholar 

  • Gueron, S. and N. Liron (1992). Ciliary motion modeling, and dynamic multicilia interactions. Biophys. J. 63, 1045–1085.

    Google Scholar 

  • Happel, J. and H. Brenner (1965). Low Reynolds Number Hydrodynamics, Prentice Hall Inc.

  • Hiramoto, Y. (1974). Mechanics of the ciliary movement, in Cilia and flagella, M. A. Sleigh (Ed.), Academic Press, pp. 177–198.

  • Jørgensen, C. B. (1982). Fluid mechanics of the mussel gill: the lateral cilia. Mar. Biol. 70, 275–281.

    Article  Google Scholar 

  • Jørgensen, C. B. (1989). Water processing in ciliary feeders, with special reference to the bivalve filter pump. Comp. Biochem. Physio. 94A, 383–394.

    Article  Google Scholar 

  • Jørgensen, C. B., T. Kjøerboe, F. Møhlenberg and H. U. Riisgård (1984). Ciliary and mucus-net filter feeding, with special reference to fluid mechanical characteristics. Mar. Ecol. Prog. Ser. 15, 183–292.

    Google Scholar 

  • Jørgensen, C. B., P. S. Larsen and H. U. Riisgård (1990). Effects of temperature on the mussel pump. Mar. Ecol. Prog. Ser. 64, 89–97.

    Google Scholar 

  • Kim, S. and S. Karrila (1991). Microhydrodynamics, Butterworth-Heinemann.

  • LaBarbara, M. (1984). Feeding currents and particle capture mechanisms in suspension feeding animals. Amer. Zool. 24, 71–84.

    Google Scholar 

  • Liron, N. (1978). Fluid transport by cilia between parallel plates. J. Fluid Mech. 86, 705–726.

    Article  MATH  MathSciNet  Google Scholar 

  • Liron, N. (1984). Stokeslet arrays in a pipe and their applications to ciliary transport. J. Fluid Mech. 143, 173–195.

    Article  MATH  MathSciNet  Google Scholar 

  • Liron, N. (1996). Stokes flow due to infinite arrays of stokeslets in three dimensions. J. Eng. Math. 30, 267–297.

    Article  MATH  MathSciNet  Google Scholar 

  • Liron, N. and S. Mochon (1976). The discrete-cilia approach to propulsion of ciliated microorganisms. J. Fluid Mech. 75, 593–607.

    Article  MathSciNet  MATH  Google Scholar 

  • Mayer, S. (1994a). Particle capture in the crown of the ciliary suspension feeding polycheate sabella penicillus: videotape recordings and interpretations. Mar. Biol. 119, 571–582.

    Article  Google Scholar 

  • Mayer, S. (1994b). Particle motion in unsteady three-dimensional flow at low Reynolds numbers, PhD thesis, Technical University of Denmark.

  • Nielsen, C. (1987). Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta. Zool. 68, 205–262.

    Google Scholar 

  • Nielsen, U. o. C. C (1999). Zoological museum. Pers. communication.

  • Odquist, F. K. G. (1930). Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Math. Z. 32, 329–375.

    Article  MATH  MathSciNet  Google Scholar 

  • Ottino, J. M. (1990). Mixing, chaotic advection, and turbulence. Ann. Rev. Fluid Mech. 22, 207–254.

    Article  MathSciNet  Google Scholar 

  • Power, H. and G. Miranda (1987). Second kind integral equation formulation of Stokes flow past a particle of arbitrary shape. SIAM J. Appl. Math. 47, 689–698.

    Article  MathSciNet  MATH  Google Scholar 

  • Riisgård, H. U. and N. M. Ivarsson (1990). The crown filament pump of the suspension-feeding polychaete sabella penicillus: filtration, effects of temperature, and energy cost. Mar. Ecol. Prog. Ser. 62, 249–257.

    Google Scholar 

  • Shimeta, J. (1993). Diffusional encounter of submicrometer particles and small cells by suspension feeders. Limnol Oceanogr. 38, 456–465.

    Article  Google Scholar 

  • Shimeta, J. and P. A. Jumars (1991). Physical mechanisms and the rate of particle capture by suspension feeders. Oceanogr. Mar. Biol. Annu. Rev. 29, 191–257.

    Google Scholar 

  • Sleigh, M. A. (1974). Cilia and Flagella, Academic Press.

  • Spielmann, L. A. (1977). Particle capture from low-speed laminar flows. Ann Rev. Fluid Mech. 9, 197–319.

    Google Scholar 

  • Spielmann, L. A. and S. L. Goren (1970). Capture of small particles by London forces from low-speed liquid flows. Environ. Sci. Tech. 4, 135–140.

    Article  Google Scholar 

  • Weinbaum, S., P. Ganatos and Z. Yan (1990). Numerical multipole and boundary integral equation techniques in stokes flow. Annu. Rev. Fluid Mech. 22, 275–316.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, S. Numerical simulation of flow fields and particle trajectories in ciliary suspension feeding. Bull. Math. Biol. 62, 1035–1059 (2000). https://doi.org/10.1006/bulm.2000.0190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0190

Keywords

Navigation