Skip to main content
Log in

A Hodgkin-Huxley model exhibiting bursting oscillations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate bursting behaviour generated in an electrophysiological model of pituitary corticotrophs. The active and silent phases of this mode of bursting are generated by moving between two stable oscillatory solutions. The bursting is indirectly driven by slow modulation of the endoplasmic reticulum Ca2+ concentration. The model exhibits different modes of bursting, and we investigate mode transitions and similar modes of bursting in other Hodgkin-Huxley models. Bifurcation analysis and the use of null-surfaces facilitate a geometric interpretation of the model bursting modes and action potential generation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, M., B. S. Wong, S. L. Sabol, N. Busis, M. B. Jackson and F. F. Weight (1983). Action potentials and membrane ion channels in clonal anterior pituitary cells. Proc. Natl. Acad. Sci. USA 80, 2086–2090.

    Article  Google Scholar 

  • Alberts, B., D. Bray, J. Lewis, M. Kaff, K. Roberts and J. D. Watson (1983). Molecular Biology of the Cell, 1st edn, New York: Garland.

    Google Scholar 

  • Arnold, V., V. Afrajmovich, Y. Il’yashenko and L. Shil’nikov (1994). Dynamical systems V, Encyclopaedia of Mathematical Sciences, Chap. 4.4, New York: Springer-Verlag.

    Google Scholar 

  • Baer, S., T. Erneux and J. Rinzel (1989). The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM. J. Appl. Math. 49, 55–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Bertram, R., M. J. Butte, T. Kiemel and A. Sherman (1995). Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57, 413–439.

    Article  MATH  Google Scholar 

  • Chay, T. (1997). Effects of extracellular calcium on electrical bursting and intracellular and luminal calcium oscillations in insulin secreting pancreatic β-cells. Biophys. J. 73, 1673–1688.

    Google Scholar 

  • de Vries, G. (1998). Multiple bifurcations in a polynomial model of bursting oscillations. J. Nonlinear Sci. 8, 281–316.

    Article  MATH  MathSciNet  Google Scholar 

  • Doedel, E. (1981). A program for the automatic bifurcation analysis of autonomous systems. Congr. Numer. 30, 265–484.

    MATH  MathSciNet  Google Scholar 

  • Gall, D. and I. Susa (1999). Effect of Na/Ca exchange on plateau fraction and [Ca]i in models for bursting in pancreatic-β-cells. Biophys. J. 77, 45–53.

    Google Scholar 

  • Guérineau, N. C., J. B. Corcuff, P. Mariot, B. T. Lussier and P. Mollard (1991). Spontaneous and corticotropin-releasing factor-induced cytosolic calcium transients in corticotrophs. Endocrinology 129, 409–420.

    Google Scholar 

  • Hale, J. and H. Kocak (1991). Dynamics and Bifurcations, Chap. 6, New York: Springer-Verlag.

    MATH  Google Scholar 

  • Hodgkin, A. L. and A. F. Huxley (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544.

    Google Scholar 

  • Holden, L. and T. Erneux (1993). Slow passage through a Hopf bifurcation: from oscillatory to steady state solutions. SIAM J. Appl. Math. 53, 1045–1058.

    Article  MathSciNet  MATH  Google Scholar 

  • Izhikevich, E. (2000). Neural excitability, spiking, and bursting. Int. J. Bifurcation Chaos 10, (in press).

  • Kuryshev, Y. A., G. V. Childs and A. K. Ritchie (1995). Three high threshold calcium channel subtypes in rat corticotrophs. Endocrinology 136, 3916–3924.

    Article  Google Scholar 

  • Kuryshev, Y. A., G. V. Childs and A. K. Ritchie (1996). Corticotropin-releasing hormone stimulates Ca2+ entry through L-and P-type Ca2+ channels in rat corticotrophs. Endocrinology 137, 2269–2277.

    Article  Google Scholar 

  • Kuryshev, Y. A., L. Haak, G. V. Childs and A. K. Ritchie (1997). Corticotropin releasing hormone inhibits an inwardly rectifying potassium current in rat corticotrophs. J. Physiol. (Lond.) 502, 265–279.

    Article  Google Scholar 

  • Kuznetsov, Y. A. (1998). Elements of Applied Bifurcation Theory, 2nd edn, New York: Springer-Verlag.

    MATH  Google Scholar 

  • LeBeau, A. P., A. B. Robson, A. E. McKinnon, R. A. Donald and J. Sneyd (1997). Generation of action potentials in a mathematical model of corticotrophs. Biophys. J. 73, 1263–1275.

    Google Scholar 

  • LeBeau, A. P., A. B. Robson, A. E. McKinnon and J. Sneyd (1998). Analysis of a reduced model of corticotroph action potentials. J. Theor. Biol. 192, 319–339.

    Article  Google Scholar 

  • Li, Y., J. Rinzel, L. Vergara and S. Stojilković (1995). Spontaneous electrical and calcium oscillations in unstimulated pituitary gonadotrophs. Biophys. J. 69, 785–795.

    Article  Google Scholar 

  • Li, Y., S. Stojilković, J. Keizer and J. Rinzel (1997). Sensing and refilling calcium stores in an excitable cell. Biophys. J. 72, 1080–1091.

    Google Scholar 

  • Mollard, P., N. C. Guérineau, J. Audin and B. Dufy (1987). Electrical properties of cultured human adrenocorticotropin-secreting adenoma cells: effects of high K+, corticotropin-releasing factor, and angiotensin II. Endocrinology 121, 395–405.

    Article  Google Scholar 

  • Neher, E. and G. J. Augustine (1992). Calcium gradients and buffers in bovine chromaffin cells. J. Physiol. (Lond.) 450, 273–301.

    Google Scholar 

  • Rinzel, J. (1985). Bursting oscillations in an excitable membrane model, Proceedings of the 8th Dundee Conference on the Theory of Ordinary and Partial Differential Equations, B. Sleeman and R. Jarvis (Eds), New York: Springer-Verlag.

    Google Scholar 

  • Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems, in Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Lecture Notes in Biomathematics 71, E. Teramoto and M. Yamaguti (Eds), Berlin: Springer-Verlag.

    Google Scholar 

  • Rinzel, J. and Y. Lee (1986). On different mechanisms for membrane potential bursters, Nonlinear Oscillations in Biology and Chemistry, Lecture Notes in Biomathematics 66, H. Othmer (Ed.), New York: Springer-Verlag.

    Google Scholar 

  • Rush, M. and J. Rinzel (1994). Analysis of bursting in a thalamic neuron model. Biol. Cybern. 71, 281–291.

    MATH  Google Scholar 

  • Shorten, P. R., A. P. LeBeau, A. B. Robson, A. E. McKinnon and D. J. N. Wall (1999a). A role of the endoplasmic reticulum in a mathematical model of corticotroph action potentials, Technical Report 173/1-21/(1999), New Zealand: University of Canterbury.

    Google Scholar 

  • Shorten, P. R., A. B. Robson, A. E. McKinnon and D. J. N. Wall (1999b). The inward rectifier in a model of corticotroph electrical activity, Technical Report 186/1-22/(1999), New Zealand: University of Canterbury.

    Google Scholar 

  • Wang, X. (1993). Ionic basis for intrinsic 40 Hz neuronal oscillations. NeuroReport 5, 221–224.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shorten, P.R., Wall, D.J.N. A Hodgkin-Huxley model exhibiting bursting oscillations. Bull. Math. Biol. 62, 695–715 (2000). https://doi.org/10.1006/bulm.2000.0172

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0172

Keywords

Navigation