Skip to main content
Log in

Multipole approach to the inverse problem in electrocardiology: Convergence of the multipole equivalent generator on the inhomogeneous body conductor

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The multipole approach to the inverse electrocardiological problem consists of estimating the multipole components of the cardiac electric generator, starting from the measured body surface potential. This paper presents a critical investigation of the basic premise for the applicability of the multipole approach, namely the convergence of the multipole equivalent generator for the heart on the surface of an inhomogeneous body conductor. As an extension to multipole theory, a criterion for the convergence is derived. Based on realistic models for the body conductor and the cardiac electric generator, we observe that the criterion is not strictly satisfied in realistic conditions. Numerical simulations with the same models point out that the multipole equivalent generator is indeed not convergent in the strict mathematical sense. On the other hand, we show that the multipole equivalent generator yields a rather close approximation of the electrocardiological potential for intermediate values of the order of the multipole generator. A discussion is given on how to explain the apparently ambiguous results for the estimation of cardiac multipole components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthur, R. M. (1999). Spherical-harmonic approximation to the forward problem electrocardiology. J. Electrocardiol. 32, 103–114.

    Article  Google Scholar 

  • Arthur, R. M., D. B. Geselowitz, S. A. Briller and R. F. Trost (1972). Quadrupole components of the human surface electrocardiogram. Am. Heart J. 83, 663–677.

    Article  Google Scholar 

  • Arzbaecher, R. C. and D. A. Brody (1976). The lead field: vector and tensor properties, in The Theoretical Basis of Electrocardiography, Nelson and Geselowitz (Eds), Oxford: Clarendon Press, pp. 175–201.

    Google Scholar 

  • Barnard, A. C. L., I. M. Duck, M. S. Lynn and W. P. Timlake (1967). The application of electromagnetic theory to electrocardiology—derivation of integral equations. Biophys. J. 7, 443–462.

    Google Scholar 

  • Barr, R. C., T. C. Pilkington, J. P. Boineau and M. S. Spach (1966). Determining surface potentials from current dipoles, with application to electrocardiography. IEEE Trans. Biomed. Eng. 13, 88–92.

    Google Scholar 

  • Barr, R. C., M. Ramsey and M. S. Spach (1977). Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans. Biomed. Eng. 24, 1–11.

    Google Scholar 

  • Brody, D. A. (1956). A theoretical analysis of intracavitary blood mass influence on the heart lead relationship. Circ. Res. 4, 731–738.

    Google Scholar 

  • Brody, D. A., J. C. Bradshaw and J. W. Evans (1961). The elements of an electrocardiographic tensor theory. Bull. Math. Biophys. 23, 31–42.

    Google Scholar 

  • Brody, D. A., J. W. Cox and L. G. Horan (1973). Hexadecapolar shift equations applicable to equivalent cardiac generators of lower degree. Ann. Biomed. Eng. 1, 481–488.

    Article  Google Scholar 

  • Cornelis, J. (1980). Studie van de verwerking van elektrocardiologische potentialen, PhD dissertation, Vrije Universiteit Brussel, Belgium (in Dutch).

    Google Scholar 

  • Cuppen, J. J. M. and A. van Oosterom (1984). Model studies with the inversely calculated isochrones of ventricular depolarization. IEEE Trans. Biomed. Eng. 31, 652–659.

    Google Scholar 

  • Damen, A. (1980). On the observability of electrical cardiac sources, PhD dissertation, Technische Hogeschool Eindhoven, The Netherlands.

    Google Scholar 

  • de Guise, J., R. M. Gulrajani, P. Savard, R. Guardo and F. A. Roberge (1985). Inverse recovery of two moving dipoles from simulated surface potential distributions on a realistic human torso model. IEEE Trans. Biomed. Eng. 32, 126–135.

    Google Scholar 

  • De Muynck, P. (1994). Multipooltheorie in de Elektrocardiologie, PhD dissertation, Vrije Universiteit Brussel, Belgium (in Dutch).

    Google Scholar 

  • De Muynck, P. and J. Cornelis (1996). Multipole approach to the inverse electrocardiological problem for the realistic inhomogeneous body conductor, in Computers in Cardiology, Vienna 1995, Murray and Arzbaecher (Eds), IEEE Computer Society Press, pp. 91–94.

  • De Muynck, P., E. Nyssen, J. Cornelis, P. Block and O. Steenhaut (1986). Exploring the limits of ECG preprocessing methods, insensitive to interindividual differences in thoracic properties, in Computers in Cardiology, Boston, 1986, IEEE Computer Society Press, pp. 219–222.

  • Dubé, B., P. Savard, R. Guardo, R. M. Gulrajani and J. P. Drouhard (1985). Surface integration and least-squares procedures for the inverse recovery of cardiac multipole components. Ann. Biomed. Eng. 13, 43–58.

    Article  Google Scholar 

  • Epstein, B. R. and K. R. Foster (1983). Anisotropies in the dielectric properties of skeletal muscle. Med. Biol. Eng. Comput. 21, 51–55.

    Google Scholar 

  • Geselowitz, D. B. (1960). Multipole representation for an equivalent cardiac generator. Proc. IRE 48, 75–79.

    Google Scholar 

  • Geselowitz, D. B. (1997). The theoretical basis of bioelectromagnetic fields. Invited lecture in Biomedizinische Technik 42 (Erg. 1).

  • Gulrajani, R. M. and G. E. Mailloux (1983). A simulation of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models. Circ. Res. 52, 45–56.

    Google Scholar 

  • Gulrajani, R. M., P. Savard and F. A. Roberge (1988). The inverse problem of electrocardiography: solution in terms of equivalent sources. CRC Crit. Rev. Biomed. Eng. 16, 171–214.

    Google Scholar 

  • Helmholtz, H. (1853). Über einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Pogg. Annln. Physik Chemie 89, 211–233 and 353–377.

    Google Scholar 

  • Jackson, J. D. (1975). Classical Electrodynamics, John Wiley & Sons Inc.

  • Kellogg, O. D. (1929). Foundations of Potential Theory, New York: Dover Publications.

    Google Scholar 

  • Kneppo, P. and L. I. Titomir (1979). Integral characteristics of the human cardiac electrical generator from electric field measurements by means of an automatic cylindrical coordinator. IEEE Trans. Biomed. Eng. 26, 21–28.

    Google Scholar 

  • Lynn, M. S. and W. P. Timlake (1968a). The numerical solution of singular integral equations of potential theory. Numer. Math. 11, 77–98.

    Article  MathSciNet  MATH  Google Scholar 

  • Lynn, M. S. and W. P. Timlake (1968b). The use of multiple deflations in the numerical solution of singular systems of equations, with applications to potential theory. SIAM J. Numer. Anal. 5, 303–322.

    Article  MathSciNet  MATH  Google Scholar 

  • Malmivuo, J. and R. Plonsey (1995). Bioelectromagnetism. Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford: Oxford University Press.

    Google Scholar 

  • Martensen, E. (1968). Potentialtheorie, Stuttgart: B.G.Teubner (in German).

    MATH  Google Scholar 

  • McFee, R. and S. Rush (1968). Qualitative effects of thoracic resistivity variations on the interpretation of electrocardiograms: the low resistance surface layer. Am. Heart J. 76, 48–61.

    Article  Google Scholar 

  • Meijs, J. W. H., O. W. Weier, M. J. Peters and A. van Oosterom (1989). On the numerical accuracy of the boundary element method. IEEE Trans. Biomed. Eng. 36, 1038–1049.

    Article  Google Scholar 

  • Morse, P. M. and H. Feshbach (1953). Methods of Theoretical Physics, McGraw-Hill Book Company.

  • Nolte, G. and G. Curio (1997). On the calculation of magnetic fields based on multipole modeling of focal biological current sources. Biophys. J. 73, 1253–1262.

    Google Scholar 

  • Nyssen, E., J. Cornelis, Y. Christophe and P. Block (1986). ECG Preprocessing based on a physical model, Proc. IV Mediterranean Conference on Medical and Biological Engineering—MECOMBE’86, Sevilla-Spain: pp. 200–203.

  • Pilkington, T. C. and M. N. Morrow (1982). The usefulness of multipoles in electrocardiography. CRC Crit. Rev. Biomed. Eng 175–192.

  • Plonsey, R. (1966). Limitations on the equivalent cardiac generator. Biophys. J. 6, 163–173.

    Article  Google Scholar 

  • Plonsey, R. and D. B. Heppner (1967). Considerations of quasi-stationarity in electrophysiological systems. Bull. Math. Biophys. 29, 657–664.

    Google Scholar 

  • Rudy, Y. and B. J. Messinger-Rapport (1988). The inverse problem in electrocardiography: solutions in terms of epicardial potentials. CRC Crit. Rev. Biomed. Eng. 16, 215–268.

    Google Scholar 

  • Rush, S., J. Abildskov and R. Mc Fee (1963). Resistivity of body tissues at low frequencies. Circ. Res. 12, 40–50.

    Google Scholar 

  • Takano, N., R. Lawson, J. Hyttinen and J. Malmivuo (1996). Multipole like term estimation from the standard ECG records. Med. Biol. Eng. Comput. 34(Suppl. 1), 89–90.

    Google Scholar 

  • Tanaka, H., K. Yajima, T. Ihara and T. Furukawa (1980). An inverse solution in electrocardiology—estimation of epicardial potential mapping using spheroidal harmonics, in MEDINFO 80, Lindberg and Kaihara (Eds), North Holland Publishing Company, pp. 254–258.

  • Tanaka, H., K. Yayima, T. Ihara and T. Furukawa (1982). An inverse solution of electrocardiology— epicardial potential estimation by using the orthogonal expansion method. Japanese Heart Journal 23(Suppl.), 352–354.

    Google Scholar 

  • Titomir, L. I. and P. Kneppo (1985). Simultaneous analysis of the cardiac electric and magnetic fields using the scalar multipole expansion. Bulletin of Mathematical Biology 47, 123–143.

    Article  MATH  Google Scholar 

  • Titomir, L. I. and P. Kneppo (1994). Bioelectric and Biomagnetic Fields. Theory and Applications in Electrocardiology, Boca Raton: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Muynck, P., Cornelis, J. & Titomir, L.I. Multipole approach to the inverse problem in electrocardiology: Convergence of the multipole equivalent generator on the inhomogeneous body conductor. Bull. Math. Biol. 62, 543–583 (2000). https://doi.org/10.1006/bulm.2000.0169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0169

Keywords

Navigation