Skip to main content
Log in

Statistical analysis and parsimonious modelling of dendrograms of in vitro neurones

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The processes whereby developing neurones acquire morphological features that are common to entire populations (thereby allowing the definition of neuronal types) are still poorly understood. A mathematical model of neuronal arborizations may be useful to extract basic parameters or organization rules, hence helping to achieve a better understanding of the underlying growth processes.

We present a parsimonious statistical model, intended to describe the topological organization of neuritic arborizations with a minimal number of parameters. It is based on a probability of splitting which depends only on the centrifugal order of segments. We compare the predictions made by the model of several topological properties of neurones with the corresponding actual values measured on a sample of honeybee (olfactory) antennal lobe neurones grown in primary culture, described in a previous study. The comparison is performed for three populations of segments corresponding to three neuronal morphological types previously identified and described in this sample. We show that simple assumptions together with the knowledge of a very small number of parameters allow the topological reconstruction of representative (bi-dimensional) biological neurones. We discuss the biological significance (in terms of possible factors involved in the determinism of neuronal types) of both common properties and cell-type specific features, observed on the neurones and predicted by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Athreya, K. B. and P. Ney (1972). Branching Processes, New York: Springer-Verlag.

    MATH  Google Scholar 

  • Burke, R. E., W. B. Marks and B. Ulfhake (1992). A parsimonious description of motoneuron dendritic morphology using computer simulation. J. Neurosci. 12, 2403–2416.

    Google Scholar 

  • Capowski, J. J. (1989). Computer Techniques in Neuroanatomy, New York: Plenum.

    Google Scholar 

  • Carriquiry, A. L., W. P. Ireland, W. Kliemann and E. Uemura (1992). Statistical evaluation of dendritic patterns. Bull. Math. Biol. 53, 579–589.

    Article  Google Scholar 

  • Devaud, J. M. (1997). Morphogenèse de neurones impliqués dans la discrimination olfactive: étude in vivo et in vitro, PhD thesis, Université Pierre-et-Marie-Curie, Paris.

    Google Scholar 

  • Devaud, J. M. and C. Masson (1999). Dendritic pattern development of the honeybee antennal lobe neurons: a laser scanning confocal microscopic study in the honeybee. J. Neurobiol. 34, 461–474.

    Article  Google Scholar 

  • Devaud, J. M., B. Quenet, J. Gascuel and C. Masson (1994). A morphometric classification of pupal honeybee antennal lobe neurones in culture. NeuroReport 6, 214–218.

    Google Scholar 

  • Dityatev, A. E., N. M. Chmykova, L. Studer, O. Karamian, V. M. Kozhanov and H. P. Clamann (1995). Comparison of the topology and growth rules of motoneuronal dendrites. J. Comp. Neurol. 363, 505–516.

    Article  Google Scholar 

  • Fonta, C., X. J. Sun and C. Masson (1993). Morphology and spatial distribution of bee antennal lobe interneurones responsive to odours. Chem. Senses 18, 101–119.

    Google Scholar 

  • Hollingworth, T. and M. Berry (1975). Network analysis of dendritic fields of pyramidal cells in neocortex and Purkinje cells in the cerebellum of the rat. Phil. Trans. R. Soc. (Lond) B 270, 227–264.

    Google Scholar 

  • Ireland, W., J. Heidel and E. Uemura (1985). A mathematical model for the growth of dendritic trees. Neurosci. Lett. 54, 243–249.

    Article  Google Scholar 

  • Johnson, R. A. and G. K. Bhattacharyya (1996). Statistics, Principles and Methods, New York: John Wiley & Sons.

    Google Scholar 

  • Kliemann, W. (1987). A stochastic dynamical model for the characterization of the geometrical structure of dendritic processes. Bull. Math. Biol. 49, 135–152.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, G. H. and C. D. Qin (1996). A model for neurite growth and neuronal morphogenesis. Math. Biosci. 132, 97–110.

    Article  MATH  Google Scholar 

  • Li, G. H., C. Qin and L. W. Wang (1992). Neurite branching pattern formation: modelling and computer simulation. J. Theor. Biol. 157, 463–486.

    Google Scholar 

  • Li, G. H., C. Qin and L. W. Wang (1995). Computer model of growth cone behavior and neuronal morphogenesis. J. Theor. Biol. 174, 381–389.

    Article  Google Scholar 

  • Nowakowski, R. S., N. L. Haye and M. D. Egger (1992). Competitive interactions during dendritic growth: a simple stochastic growth algorithm. Brain Res. 576, 152–156.

    Article  Google Scholar 

  • Percheron, G. (1979). Quantitative analysis of dendritic branching. A simple formulae for the quantitative analysis of dendritic branching. Neurosci. Lett. 14, 287–293.

    Article  Google Scholar 

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992). Numerical Recipes in C, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Sadler, M. and M. Berry (1989). Topological link-vertex analysis of the growth of Purkinje cell dendritic trees in normal, Reeler and Weaver mice. J. Comp. Neurol. 289, 260–283.

    Article  Google Scholar 

  • Stuermer, C. A. O. (1984). Rules for retinotectal terminal arborizations in the goldfish optic tectum. J. Comp. Neurol. 229, 214–232.

    Article  Google Scholar 

  • Uemura, E., A. Carriquiry, W. Kliemann and J. Goodwin (1995). Mathematical modelling of dendritic growth in vitro. Brain Res. 671, 187–194.

    Article  Google Scholar 

  • Uylings, H. B. M., G. J. Smit and W. A. M. Weltman (1975). Ordering methods in quantitative analysis of branching structures of dendritic trees. Adv. Neurol. 12, 247–254.

    Google Scholar 

  • Van Pelt, J. (1997). Effect of pruning on dendritic topology. J. Theor. Biol. 186, 17–32.

    Article  Google Scholar 

  • Van Pelt, J., A. Dityatev and H. B. M. Uylings (1997). Natural variability in the number of dendritic segments: model-based inferences about branching during neurite outgrowth. J. Comp. Neurol. 387, 325–340.

    Article  Google Scholar 

  • Van Pelt, J., H. B. M. Uylings, R. J. Verwer, R. J. Pentney and M. J. Woldenberg (1992). Tree asymmetry: a sensitive and practical measure for binary topological trees. Bull. Math. Biol. 54, 759–784.

    Article  MATH  Google Scholar 

  • Van Pelt, J. and R. W. H. Verwer (1983). The exact probabilities of branching patterns under terminal and segmental growth hypotheses. Bull. Math. Biol. 48, 197–211.

    Google Scholar 

  • Van Pelt, J., R. W. H. Verwer and H. B. M. Uylings (1986). Application of growth models to the topology of neuronal branching patterns. J. Neurosci. Methods 18, 153–165.

    Article  Google Scholar 

  • Van Veen, M. P. and J. Van Pelt (1993). Terminal and intermediate segment lengths in neuronal trees with finite length. Bull. Math. Biol. 55, 277–294.

    Article  MATH  Google Scholar 

  • Van Veen, M. P. and J. Van Pelt (1994). Dynamic mechanisms of neuronal outgrowth. Prog. Brain Res. 102, 95–108.

    Article  Google Scholar 

  • Verwer, R. W. H. and J. Van Pelt (1985). Topological analysis of binary tree structures when occasional multifurcations occur. Bull. Math. Biol. 47, 305–316.

    Article  MathSciNet  MATH  Google Scholar 

  • Verwer, R. W. H. and J. Van Pelt (1987). Multifurcations in topological trees: growth models and comparative analysis. Acta Stereol. 6/III, 399–404.

    Google Scholar 

  • Verwer, R. W. H. and J. Van Pelt (1990). Analysis of binary trees when occasional multifurcations can be considered as aggregates of bifurcation. Bull. Math. Biol. 52, 629–641.

    Article  MATH  Google Scholar 

  • Verwer, R. W. H., J. Van Pelt and H. B. M. Uylings (1992). An introduction to topological analysis, in Quantitative Method in Neuroanatomy, M. G. Stewart (Ed.), Chichester: John Wiley & Sons, pp. 295–323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Quenet.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devaud, J.M., Quenet, B., Gascuel, J. et al. Statistical analysis and parsimonious modelling of dendrograms of in vitro neurones. Bull. Math. Biol. 62, 657–674 (2000). https://doi.org/10.1006/bulm.1999.0171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0171

Keywords

Navigation