Skip to main content
Log in

Evolution in knockout conflicts: The fixed strategy case

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A group of individuals resolve their disputes by a knockout tournament. In each round of the tournament, the remaining contestants form pairs which compete, the winners progressing to the next round and the losers being eliminated. The payoff received depends upon how far the player has progressed and a cost is incurred only when it is defeated. We only consider strategies in which individuals are constrained to adopt a fixed play throughout the successive rounds. The case where individuals can vary their choice of behaviour from round to round will be treated elsewhere. The complexity of the system is investigated and illustrated both by special cases and numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod, R. and W. D. Hamilton (1981). The evolution of cooperation. Science 211, 1390–1396.

    MathSciNet  Google Scholar 

  • Barnard, C. J. and T. E. Burk (1979). Dominance hierarchies and the evolution of individual recognition. J. Theor. Biol. 81, 65–73.

    Article  Google Scholar 

  • Binmore, K. (1992). Fun and Games (a Text on Game Theory), Lexington, Massachusetts: Heath.

    Google Scholar 

  • Bishop, D. T. and C. Cannings (1976). Models of animal conflict. Adv. Appl. Probab. 8, 616–621.

    Article  Google Scholar 

  • Broom, M., C. Cannings and G. T. Vickers (1997b). Choosing a nest site: contests and catalysts. Am. Nat. 147, 1108–1114.

    Article  Google Scholar 

  • Broom, M., C. Cannings and G. T. Vickers (1997a). A sequential-arrivals model of territory acquisition. J. Theor. Biol. 189, 257–272.

    Article  Google Scholar 

  • Broom, M., C. Cannings and G. T. Vickers (1997b). Multi-player matrix games. Bull. Math. Biol. 59, 931–952.

    Article  Google Scholar 

  • Cannings, C. and J. C. Whittaker (1994). The finite horizon war of attrition. Games Econ. Behav. 11, 193–236.

    Article  MathSciNet  Google Scholar 

  • Cressman, R. (1992). The Stability Concept of Evolutionary Game Theory: A Dynamic Approach, Lecture Notes Biomathematics, 94, Berlin: Springer-Verlag.

    Google Scholar 

  • Emlen, S. T. (1996). Reproductive sharing in different types of kin associations. Am. Nat. 150, 542–558.

    Google Scholar 

  • Grafen, A. (1990a). Sexual selection unhandicapped by the Fisher process. J. Theor. Biol. 144, 473–516.

    MathSciNet  Google Scholar 

  • Grafen, A. (1990b). Biological signals as handicaps. J. Theor. Biol. 144, 517–546.

    MathSciNet  Google Scholar 

  • Haigh, J. (1975). Game theory and evolution. Adv. Appl. Probab. 7, 8–11.

    Article  MATH  Google Scholar 

  • Haigh, J. and C. Cannings (1989). The n-person war of attrition. Acta Appl. Math. 14, 59–74.

    Article  MathSciNet  Google Scholar 

  • Hofbauer, J. and K. Sigmund (1988). The Theory of Evolution and Dynamical Systems, Lexington, Massachusetts: Cambridge University Press.

    Google Scholar 

  • Hoglund, J. and R. V. Alatalo (1995). Leks, Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Keller, L. and H. K. Reeve (1994). Partitioning of reproduction in animal societies. Trends Ecol. Evol. 9, 98–103.

    Article  Google Scholar 

  • Luce, R. D. and H. Raiffa (1957). Games and Decisions, Wiley.

  • Maynard Smith, J. (1982). Evolution and the Theory of Games, Lexington, Massachusetts: Cambridge University Press.

    Google Scholar 

  • Maynard Smith, J. and G. R. Price (1973). The logic of animal conflict. Nature 246, 15–18.

    Article  Google Scholar 

  • Mesterton-Gibbons, M. and L. A. Dugatkin (1995). Towards a theory of dominance hierarchies: effect of assessment, group size and variation in fighting ability. Behav. Ecol. 6, 416–423.

    Google Scholar 

  • Moehlman, P. D. (1979). Jackal helpers and pup survival. Nature 277, 382–383

    Article  Google Scholar 

  • Reeve, H. K. and L. Keller (1996). Relatedness asymmetry and reproductive sharing in animal societies. Am. Nat. 148, 764–769.

    Article  Google Scholar 

  • Riley, J. G. (1979). Evolutionary equilibrium strategies. J. Theor. Biol. 76, 109–123.

    Article  MathSciNet  Google Scholar 

  • Rood, J. P. (1980). Mating relationships and breeding suppression in the dwarf mongoose. Anim. Behav. 28, 143–150.

    Article  Google Scholar 

  • Thomas, B. and H. J. Pohley (1981). ESS theory for finite populations. Biosystems 13, 211–221.

    Article  Google Scholar 

  • Vehrencamp, S. L. (1983). A model for the evolution of despotic versus egalitarian societies. Anim. Behav. 31, 667–682.

    Article  Google Scholar 

  • Vehrencamp, S. L., R. R. Koford and B. S. Bowen (1988). in Reproductive Success, T. H. Clutton-Brock (Ed.), University Chicago Press, pp. 291–304.

  • von Neumann, J. and O. Morgenstern (1944). Theory of Games and Economic Behaviour, Princeton, NJ: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

M. Broom is also a member of the Centre for the Study of Evolution at the University of Sussex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broom, M., Cannings, C. & Vickers, G.T. Evolution in knockout conflicts: The fixed strategy case. Bull. Math. Biol. 62, 451–466 (2000). https://doi.org/10.1006/bulm.1999.0161

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0161

Keywords

Navigation