Skip to main content
Log in

Wavelengths of gyrotactic plumes in bioconvection

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Bioconvection occurs as the result of the collective behaviour of many microorganisms swimming in a fluid and is realized as patterns similar to those of thermal convection which occur when a layer of fluid is heated from below. We consider the phenomenon of pattern formation due to gyrotaxis, an orientation mechanism which results from the balance of gravitational and viscous torques acting on bottom-heavy micro-organisms. The continuum model of Pedley et al. (1988, J. Fluid. Mech. 195, 223–237) is used to describe the suspension. The system is governed by the Navier-Stokes equations for an incompressible fluid coupled with a micro-organism conservation equation. These equations are solved numerically using a conservative finite-difference scheme. To examine the dependence of the horizontal pattern wavelengths on the parameters, we consider two-dimensional solutions in a wide chamber using rigid side walls. The wavelengths of the numerical computations are in good agreement with the experimental observations and we provide the first computational examples of the commonly seen ‘bottom-standing’ plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batchelor, G. K. (1970). The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545–570.

    Article  MATH  MathSciNet  Google Scholar 

  • Bees, M. A. and N. A. Hill (1997). Wavelengths of bioconvection patterns. J. Exp. Biol. 200, 1515–1526.

    Google Scholar 

  • Bees, M. A., N. A. Hill and T. J. Pedley (1998). Analytical approximations for the orientation distribution of small dipolar particles in steady shear flows. J. Math. Biol. 36, 269–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Childress, S., M. Levandowsky and E. A. Spiegel (1975). Pattern formation in a suspension of swimming micro-organisms: equations and stability theory modes. J. Fluid Mech. 69, 595–613.

    Article  Google Scholar 

  • Childress, S. and R. Peyret (1976). A numerical study of two-dimensional convection by motile particles. J. Mécanique 15, 753–779.

    MATH  Google Scholar 

  • De Vahl Davis, G. (1983). Natural-convection of air in a square cavity—a bench-mark numerical-solution. Int. J. Numer. Methods Fluids 3, 249–264.

    Article  MATH  Google Scholar 

  • Ghorai, S. (1997). Bioconvection and plumes, PhD thesis, University of Leeds, UK.

    Google Scholar 

  • Ghorai, S. and N. A. Hill (1999). Development and stability of gyrotactic plumes in bioconvection. J. Fluid Mech. 400, 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghorai, S. and N. A. Hill (2000). Periodic arrays of gyrotactic plumes in bioconvection. Phys. Fluids 12, 5–22.

    Article  MATH  Google Scholar 

  • Harashima, A., M. Watanabe and I. Fujishiro (1988). Evolution of bioconvection patterns in a culture of motile flagellates. Phys. Fluids. 31, 764–775.

    Article  Google Scholar 

  • Hill, N. A. and D.-P. Häder (1997). A biased random walk model for the trajectories of swimming micro-organisms. J.Theor. Biol. 186, 503–526.

    Article  Google Scholar 

  • Hill, N. A., T. J. Pedley and J. O. Kessler (1989). Growth of bioconvection patterns in a suspension of gyrotactic micro-organisms in a layer of finite depth. J. Fluid Mech. 208, 509–543.

    Article  MathSciNet  MATH  Google Scholar 

  • de Rivas, K. (1972). On the use of nonuniform grids in finite-difference equations. J. Comput. Phys. 10, 202–210.

    Article  MATH  Google Scholar 

  • Kessler, J. O. (1984). Gyrotactic buoyant convection and spontaneous pattern formation in algal cell cultures, in Non-Equilibrium Cooperative Phenomena in Physics and Related Fields, M. G. Velarde (Ed.), New York: Plenum Press, pp. 241–248.

    Google Scholar 

  • Kessler, J. O. (1985a). Hydrodynamic focusing of motile algal cells. Nature 313, 218–220.

    Article  Google Scholar 

  • Kessler, J. O. (1985b). Co-operative and concentrative phenomena of swimming microorganisms. Contemp. Phys. 26, 147–166.

    Google Scholar 

  • Kessler, J. O. (1986). Individual and collective fluid dynamics of swimming cells. J. Fluid Mech. 173, 191–205.

    Article  Google Scholar 

  • Lennie, T. B., D. P. McKenzie, D. R. Moore and N. O. Weiss (1988). The breakdown of steady convection. J. Fluid Mech. 188, 47–85.

    Article  MathSciNet  Google Scholar 

  • Loeffer, J. B. and R. B. Mefferd (1952). Concerning pattern formation by free-swimming microorganisms. Am. Nat. 86, 325–329.

    Article  Google Scholar 

  • Pedley, T. J. and J. O. Kessler (1987). The orientation of spheroidal micro-organisms swimming in a flow field. Proc. R. Soc. Lond. Ser. B 231, 47–70.

    Article  Google Scholar 

  • Pedley, T. J. (1988). Bottom-standing plumes in gyrotactic bioconvection. Bull. Am. Phys. Soc. 33, 2282 (Abstract).

    Google Scholar 

  • Pedley, T. J. and J. O. Kessler (1990). A new continuum model for suspensions of gyrotactic micro-organisms. J. Fluid Mech. 212, 155–182.

    Article  MathSciNet  MATH  Google Scholar 

  • Pedley, T. J. and J. O. Kessler (1992). Hydrodynamic phenomena in suspensions of swimming micro-organisms. Ann. Rev. Fluid Mech. 24, 313–358.

    Article  MathSciNet  Google Scholar 

  • Pedley, T. J., N. A. Hill and J. O. Kessler (1988). The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms. J. Fluid Mech. 195, 223–237.

    Article  MathSciNet  MATH  Google Scholar 

  • Platt, J. R. (1961). ’Bioconvection patterns’ in cultures of free-swimming organisms. Science 133, 1766–1767.

    Google Scholar 

  • Plesset, M. S. and H. Winet (1974). Bioconvection patterns in swimming microorganism cultures as an example of Rayleigh-Taylor instability. Nature 248, 441–443.

    Article  Google Scholar 

  • Roberts, G. O. (1970). Computational meshes for boundary layer problems, Second International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, M. Holt (Ed.), 8, New York: Springer, pp. 171–177.

    Google Scholar 

  • Wager, H. (1911). On the effect of gravity upon the movements and aggregation of Euglena viridis, Ehrb., and other micro-organisms. Phil. Trans. R. Soc. Lond. Ser. B 201, 333–390.

    Google Scholar 

  • Wille, J. J. and C. F. Ehret (1968). Circadian rhythm of pattern formation in population of a free-swimming organism, Tetrahymena. J. Protozool. 15, 789–792.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorai, S., Hill, N.A. Wavelengths of gyrotactic plumes in bioconvection. Bull. Math. Biol. 62, 429–450 (2000). https://doi.org/10.1006/bulm.1999.0160

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0160

Keywords

Navigation