Skip to main content
Log in

Calculation of the cumulative distribution function of the time to a small observable tumor

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Multistage mathematical models of carcinogenesis (when applied to tumor incidence data) have historically assumed that the growth kinetics of cells in the malignant state are disregarded and the formation of a single malignant cell is equated with the emergence of a detectable tumor. The justification of this simplification is, from a mathematical point of view, to make the estimation of tumor incidence rates tractable. However, analytical forms are not mandatory in the estimation of tumor incidence rates. Portier et al. (1996b, Math. Biosci. 135, 129–146) have demonstrated the utility of the Kolmogorov backward equations in numerically calculating tumor incidence. By extending their results, the cumulative distribution function of the time to a small observable tumor may be numerically obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cox, D. R. and H. D. Miller (1965). The Theory of Stochastic Processes, London: Chapman and Hall, p. 216.

    MATH  Google Scholar 

  • Dewanji, A., S. Moolgavkar and E. Luebeck (1991). Two-mutation model for carcinogenesis: joint analysis of premalignant and malignant lesions. Math. Biosci. 104, 97–109.

    Article  MATH  Google Scholar 

  • Dewanji, A., D. Venzon and S. Moolgavkar (1989). A stochastic two-stage model for cancer risk assessment. II. The number and size of premalignant clones. Risk Anal. 9, 179–187.

    Article  Google Scholar 

  • Gart, J., D. Krewski, P. Lee, R. Tarone and J. Wahrendorf (1986). Statistical Methods in Cancer Research III: The Design and Analysis of Long-term Animal Studies (IARC Scientific Publication No. 79), New York: Oxford University Press, pp. 122–127.

    Google Scholar 

  • Harris, T. (1963). The Theory of Branching Processes, Berlin: Springer-Verlag, pp. 99–103.

    MATH  Google Scholar 

  • Heidenreich, W. F. (1996). On the parameters of the clonal expansion model. Radiat. Environ. Biophys. 35, 127–129.

    Article  Google Scholar 

  • Kopp-Schneider, A. and C. Portier (1994). A stem cell model for carcinogenesis. Math. Biosci. 120, 211–232.

    Article  MATH  Google Scholar 

  • Kopp-Schneider, A. and C. Portier (1995). Carcinoma formation in NMRI mouse skin-painting studies is a process suggesting greater than 2 stages. Carcinogenesis 16, 53–59.

    Google Scholar 

  • Kopp-Schneider, A., C. Portier and C. Sherman (1994). The exact formula for tumor incidence in the two-stage model. Risk Anal. 14, 1079–1080.

    Article  Google Scholar 

  • Luebeck, E. G. and S. H. Moolgavkar (1994). Simulating the process of malignant transformation. Math. Biosci. 123, 127–146.

    Article  MATH  Google Scholar 

  • Lyles, C. (1996). The modeling of cell proliferation: incorporating the cell cycle, Unpublished doctoral dissertation, Department of Biostatistics, University of North Carolina-Chapel Hill.

  • Maronpot, R. R., J. F. Foley, K. Takahashi, T. Goldsworthy, G. Clark, A. Tritscher, C. Portier and G. Lucier (1993). Dose response for TCDD promotion of hepatocarcinogenesis in rats initiated with DEN: histological, biochemical, and cell proliferation end-points. Environ. Health Perspect. 101, 634–642.

    Google Scholar 

  • Moolgavkar, S. and E. G. Luebeck (1992). Interpretation of labeling indices in the presence of cell death. Carcinogenesis 13, 1007–1010.

    Google Scholar 

  • Moolgavkar, S., E. Luebeck, A. Buchmann and K. Bock (1996). Quantitative analysis of enzyme-altered liver foci in rats initiated with diethylnitrosamine and promoted with 2,3,7,8-tetrachlorodibenzo-p-dioxin or 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol. 138, 31–42.

    Article  Google Scholar 

  • Moolgavkar, S. and D. Venzon (1979). Two-event models for carcinogenesis: incidence curves for childhood and adult tumors. Math. Biosci. 47, 55–77.

    Article  MATH  Google Scholar 

  • Portier, C. and A. J. Bailer (1989). Two-stage models of tumor incidence for historical control animals in the National Toxicology Program’s Carcinogenicity Experiments. J. Toxicol. Environ. Health 27, 21–45.

    Article  Google Scholar 

  • Portier, C., J. Hedges and D. Hoel (1986). Age-specific models of mortality and tumor onset for historical control animals in the NTP bioassay. Cancer Res. 4, 4372–4378.

    Google Scholar 

  • Portier, C. J., M. C. Kohn, A. Kopp-Schneider, C. D. Sherman, R. Maronpot and G. W. Lucier (1996a). Modeling the number and size of hepatic focal lesions following exposure to 2,3,7,8-TCDD. Toxicol. Appl. Pharmacol. 138, 20–30.

    Article  Google Scholar 

  • Portier, C., A. Kopp-Schneider and C. Sherman (1996b). Calculating tumor incidence rates in stochastic models of carcinogenesis. Math. Biosci. 135, 129–146.

    Article  MATH  Google Scholar 

  • Sherman, C. and C. Portier (1995). Quantitative analysis of multiple phenotype enzyme altered foci in rat hepatocarcinogenesis experiments—the multipath-multistage model. Carcinogenesis 16, 2499–2506.

    Google Scholar 

  • Sherman, C. and C. Portier (1997). The two-stage model of carcinogenesis: overcoming the non-identifiability dilemma. Risk Anal. 17, 367–374.

    Article  Google Scholar 

  • Sherman, C., C. Portier and A. Kopp-Schneider (1994). Multistage models of carcinogenesis: an approximation method for the size and number distribution of late-stage clones. Risk Anal. 14, 1039–1048.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire D. Sherman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherman, C.D., Portier, C.J. Calculation of the cumulative distribution function of the time to a small observable tumor. Bull. Math. Biol. 62, 229–240 (2000). https://doi.org/10.1006/bulm.1999.0148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0148

Keywords

Navigation