Skip to main content

Advertisement

Log in

Parathyroid hormone temporal effects on bone formation and resorption

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Parathyroid hormone (PTH) paradoxically causes net bone loss (resorption) when administered in a continuous fashion, and net bone formation (deposition) when administered intermittently. Currently no pharmacological formulations are available to promote bone formation, as needed for the treatment of osteoporosis. The paradoxical behavior of PTH confuses endocrinologists, thus, a model bone resorption or deposition dependent on the timing of PTH administration would de-mystify this behavior and provide the basis for logical drug formulation. We developed a mathematical model that accounts for net bone loss with continuous PTH administration and net bone formation with intermittent PTH administration, based on the differential effects of PTH on the osteoblastic and osteoclastic populations of cells.

Bone, being a major reservoir of body calcium, is under the hormonal control of PTH. The overall effect of PTH is to raise plasma levels of calcium, partly through bone resorption. Osteoclasts resorb bone and liberate calcium, but they lack receptors for PTH. The preosteoblastic precursors and preosteoblasts possess receptors for PTH, upon which the hormone induces differentiation from the precursor to preosteoblast and from the preosteoblast to the osteoblast. The osteoblasts generate IL-6; IL-6 stimulates preosteoclasts to differentiate into osteoclasts. We developed a mathematical model for the differentiation of osteoblastic and osteoclastic populations in bone, using a delay time of 1 hour for differentiation of preosteoblastic precursors into preosteoblasts and 2 hours for the differentiation of preosteoblasts into osteoblasts. The ratio of the number of osteoblasts to osteoclasts indicates the net effect of PTH on bone resorption and deposition; the timing of events producing the maximum ratio would induce net bone deposition.

When PTH is pulsed with a frequency of every hour, the preosteoblastic population rises and decreases in nearly a symmetric pattern, with 3.9 peaks every 24 hours, and 4.0 peaks every 24 hours when PTH is administered every 6 hours. Thus, the preosteoblast and osteoblast frequency depends more on the nearly constant value of the PTH, rather than on the frequency of the PTH pulsations. Increasing the time delay gradually increases the mean value for the number of osteoblasts. The osteoblastic population oscillates for all intermittent administrations of PTH and even when the PTH infusion is constant. The maximum ratio of osteoblasts to osteoclasts occurs when PTH is administered in pulses of every 6 hours.

The delay features in the model bear most of the responsibility for the occurrence of these oscillations, because without the delay and in the presence of constant PTH infusions, no oscillations occur. However, with a delay, under constant PTH infusions, the model generates oscillations. The osteoblast oscillations express limit cycle behavior. Phase plane analysis show simple and complex attractors. Subsequent to a disturbance in the number of osteoblasts, the osteoblasts quickly regain their oscillatory behavior and cycle back to the original attractor, typical of limit cycle behavior. Further, because the model was constructed with dissipative and nonlinear features, one would expect ensuing oscillations to show limit cycle behavior. The results from our model, increased bone deposition with intermittent PTH administration and increased bone resorption with constant PTH administration, conforms with experimental observations and with an accepted explanation for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, E. M. (1991). Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol. Rev. 71, 371–411.

    Google Scholar 

  • Burgess, T. L. et al. (1999). The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527–538.

    Article  Google Scholar 

  • Cantor, C. R. and P. R. Schimmel (1971). Biophysical Chemistry, Part III, The Behavior of Biological Macromolecules, San Francisco: W.H. Freeman & Co., pp. 849–866.

    Google Scholar 

  • Dempster, D. W., F. Cosman, M. Parisien, V. Shen and R. Lindsay (1993). Anabolic actions of parathyroid hormone on bone. Endocr. Rev. 14, 690–709.

    Article  Google Scholar 

  • Dobnig, H. and R. T. Turner (1995). Evidence that intermittent treatment with parathryoid hormone increases bone formation in adult rat by activation of bone lining cells. Endocrinology 136, 3632–3638.

    Article  Google Scholar 

  • Finkelstein, J. S., A. Klibanski, A. L. Arnold, T. L. Toth, M. D. Hornstein and R. M. Neer (1998). Prevention of estrogen deficiency-related bone loss with human parathyroid hormone (1–34). J. Am. Med. Assoc. 280, 1067–1073.

    Article  Google Scholar 

  • Granner, D. K. (1995). Hormonal action, in Principles and Practice of Endocrinology and Metabolism, 2nd edn, K. L. Becker (Ed.), Philadelphia: J. P. Lippincott Co., pp. 20–25.

    Google Scholar 

  • Green, J., S. Schotland, Z. Sella and C. R. Kleeman (1994). Interleukin-6 attenuates agonist-mediated calcium mobilization in murine osteoblasts. J. Clin. Invest. 93, 2340–2350.

    Google Scholar 

  • Greenfield, E. M., S. A. Gornik, M. C. Horowitz, H. J. Donahue and S. M. Shaw (1993). Regulation of cytokine expression in osteoblasts by parathyroid hormone: rapid stimulation of interleukin-6 and leukemia inhibitory factor mRNA. J. Bone Mineral Res. 8, 1163–1171.

    Google Scholar 

  • Harms, H. M., U. Kaptaina, W. R. Kulpmann, G. Brabrant and R. D. Hesch (1989). Pulse amplitude and frequency modulation of parathyroid hormone in plasma. J. Clin. Endocrinol. Metab. 69, 843–851.

    Google Scholar 

  • Hesch, R. D. (1988). Pulsatile secretion of parathyroid hormone and its action on a Type I and Type II PTH receptor: a hypothesis for understanding osteoporosis. Calcif. Tissue. Int. 42, 341–344.

    Google Scholar 

  • Hock, J. M. and I. Gera (1992). Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone. J. Bone Mineral Res. 7, 65–72.

    Google Scholar 

  • Horwood, N. J., J. Elliott, T. J. Martin and M. T. Gillespie (1998). Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 139, 4743–4746.

    Article  Google Scholar 

  • Hughes, F. J. and G. L. Howells (1993). Interleukin-6 inhibits bone formation in vitro. Bone Miner. 21, 21–28.

    Google Scholar 

  • Hurley, M. M., S. Tetradis, Y.-F. Huang, J. Hock, B. E. Kream, L. G. Raisz and M. G. Sabbieti (1999). Parathyroid hormone regulates the expression of fibroblast growth factor-2 mRNA and fibroblast growth factor receptor mRNA in osteoblastic cells. J. Bone Miner. Res. 14, 776–783.

    Article  Google Scholar 

  • Ishizuya, T., S. Yokose, M. Hori, T. Noda, T. Suda, S. Yoshiki and A. Yamaguchi (1997). Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J. Clin. Invest. 99, 2961–2970.

    Article  Google Scholar 

  • Isogai, Y. T., T. Akatsu, T. Ishizuya, A. Yamaguchi, M. Hori, N. Tokahashi and T. Suda (1996). Parathyroid hormone regulates osteoblast differentiation positively or negatively depending on differentiation stages. J. Bone Mineral Res. 11, 1384–1393.

    Google Scholar 

  • Jongen, I. W., E. C. Willemstein-van Hove, J. M. van der Meer, M. P. Bos, H. Juppner, G. V. Segre, A. B. Abou-Samra, J. H. Feyen and M. P. Herrmann-Erlee (1996). Down-regulation of the receptor for parathyroid hormone (PTH) and PTH-related peptide by PTH in primary fetal rat osteoblasts. J. Bone Miner. Res. 11, 1218–1225.

    Article  Google Scholar 

  • Kong, Y. Y. et al. (1999). OPGL is a key regulator of osteoclastogenensis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323.

    Article  Google Scholar 

  • Mackey, M. C. and L. Glass (1977). Oscillations and chaos in physiological control systems. Science 197, 287–289.

    Google Scholar 

  • Mahoney, C. A., R. A. Nissenson, P. Sarnacki and K. Pua (1983). Canine renal receptors for parathyroid hormone. Down-regulation in vivo by exogenous parathyroid hormone. J. Clin. Invest. 72, 411–421.

    Google Scholar 

  • McSheehy, P. M. J. and T. J. Chambers (1986). Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology 118, 824–828.

    Google Scholar 

  • Mundy, G. R. (1993). Cytokines and growth factors in the regulation of bone remodeling. J. Bone Mineral Res. 8, Suppl. 2, S505–S510.

    Google Scholar 

  • Mundy, G. R. (1999). Cellular and molecular regulation of bone turnover. Bone 24, 35S–38S.

    Article  Google Scholar 

  • Murray, J. D. (1989). Mathematical Biology, Berlin: Springer-Verlag, pp. 8–12.

    MATH  Google Scholar 

  • Oniya, J. E., J. Bidwell, J. Herring, J. Hulman and J. M. Hock (1995). In vivo, human parathyroid fragment (hPTH 1-34) transiently stimulates immediate early response gene expression, but not proliferation, in trabecular bone cells of young rats. Bone 17, 479–484.

    Article  Google Scholar 

  • Parnas, H. (1991). Control of neurotransmitter release: use of facilitation to analyze the regulation of intracellular calcium, in Biological Kinetics, L. A. Segel (Ed.), Cambridge, U.K.: Cambridge University Press, pp. 153–181.

    Google Scholar 

  • Peck, W. A. (1993). Concensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 94, 646–650.

    Article  Google Scholar 

  • Perelson, A. S. (1991). Chaos, in Biological Kinetics, L. A. Segel (Ed.), Cambridge, U.K.: Cambridge University Press, pp. 153–181.

    Google Scholar 

  • Podbesek, R., C. Edouard, P. J. Meunier, J. A. Parsons, J. Reeve, R. W. Stevenson and J. M. Zanelli (1983). Effects of two treatment regimes with synthetic human parathyroid hormone fragment on bone formation and the tissue balance of trabecular bone in greyhounds. Endocrinology 112, 1000–1006.

    Google Scholar 

  • Prank, K., H. Harms, M. Daemmig, G. Brabant, F. Mitschke and R.-D. Hesch (1994). Is there low-dimensional chaos in pulsatile secretion of parathyroid hormone in normal human subjects? Am. J. Physiol. 266, E653–E658.

    Google Scholar 

  • Raisz, L. G. (1988). Local and systemic factors in the pathogenesis of osteoporosis. N. Engl. J. Med. 318, 818–828.

    Article  Google Scholar 

  • Raisz, L. G. and B. E. Kream (1983). Regulation of bone formation. New Engl. J. Med. 309, 29–35.

    Article  Google Scholar 

  • Riggs, F. L. and L. J. Melton III (1992). The prevention and treatment of osteoporosis. N. Engl. J. Med. 327, 620–627.

    Article  Google Scholar 

  • Roodman, G. D. (1995). Osteoclast function in Paget’s disease and multiple myeloma. Bone 17, 57S–61S.

    Article  Google Scholar 

  • Rosenberg, A. (1994). Skeletal system and soft tissue tumors, in Robbins Pathologic Basis of Disease, 5th edn, R. S. Cotran, V. Kumar and S. L. Robbins (Eds), Philadelphia: W. B. Saunders Co., pp. 1219–1222.

    Google Scholar 

  • Samuels, M. H., J. Veldhuis, C. Cawley, R. J. Urban, M. Luther, R. Bauer and G. Mundy (1993). Pulsatile secretion of parathyroid hormone in normal young subjects: assessment by deconvolution analysis. J. Clin. Endocrinol. Metab. 76, 399–403.

    Article  Google Scholar 

  • Suda, T., N. Takahashi and T. J. Martin (1992). Modulation of osteoclast differentiation. Endocr. Rev. 13, 66–80.

    Article  Google Scholar 

  • Takahashi, N., N. Udagawa and T. Suda (1999). A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256, 449–455.

    Article  Google Scholar 

  • Tam, C. S., N. M. Heersche, T. M. Murray and J. A. Parsons (1982). Parathyroid hormone stimulates the bone apposition rate independentlly of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology 110, 506–512.

    Article  Google Scholar 

  • Tohmé, J. F., F. Corman and R. Lindsay (1995). Osteoporosis, in Principles and Practice of Endocrinology and Metabolism, 2nd edn, K. L. Becker (Ed.), Philadelphia: J. B. Lippincott Co., pp. 567–585.

    Google Scholar 

  • Weryha, G. and J. Leclère (1995). Paracrine regulation of bone remodeling. Horm. Res. 43, 69–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroll, M.H. Parathyroid hormone temporal effects on bone formation and resorption. Bull. Math. Biol. 62, 163–188 (2000). https://doi.org/10.1006/bulm.1999.0146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0146

Keywords

Navigation