Skip to main content
Log in

Mathematical model for early development of the sea urchin embryo

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In Xenopus and Drosophila, the nucleocytoplasmic ratio controls many aspects of cell-cycle remodeling during the transitory period that leads from fast and synchronous cell divisions of early development to the slow, carefully regulated growth and divisions of somatic cells. After the fifth cleavage in sea urchin embryos, there are four populations of differently sized blastomeres, whose interdivision times are inversely related to size. The inverse relation suggests nucleocytoplasmic control of cell division during sea urchin development as well. To investigate this possibility, we developed a mathematical model based on molecular interactions underlying early embryonic cell-cycle control. Introducing the nucleocytoplasmic ratio explicitly into the molecular mechanism, we are able to reproduce many physiological features of sea urchin development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrell, I. (1956). A mitotic gradient as the cause of the early differentiation in the sea urchin embryo, in Zoological Papers in Honour of B. Hanstrom, K. G. Wingstrand (Ed.), Sweden: Lund, pp. 27–34.

    Google Scholar 

  • Agrell, I. (1964). Natural division synchrony and mitotic gradients in metazoan tissues, in Synchrony in Cell Division and Growth, E. Zeuthen (Ed.), New York: Wiley Interscience, pp. 39–67.

    Google Scholar 

  • Andreuccetti, P., M. R. Barone Lumaga, G. Cafiero, S. Filosa and E. Parisi (1987). Cell junctions during the early development of the sea urchin embryo Paracentrotus lividus. Cell Differ. 20, 137–146.

    Article  Google Scholar 

  • Andreuccetti, P., S. Filosa, A. Monroy and E. Parisi (1982). Cell-cell interactions and the role of micromeres in the control of the mitotic pattern in sea urchin embryo. Prog. Clin. Biol. Res. B85, 21–29.

    Google Scholar 

  • Clarke, P. R., I. Hoffmann, G. Draetta and E. Karsenti (1993). Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in Xenopus extracts. Mol. Biol. Cell 4, 397–411.

    Google Scholar 

  • Dasso, M. and J. W. Newport (1990). Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell 61, 811–823.

    Article  Google Scholar 

  • Edgar, B. A., C. P. Kiehle and G. Schubiger (1986). Cell cycle control by the nucleocytoplasmic ratio in early Drosophila development. Cell 44, 365–372.

    Article  Google Scholar 

  • Giudice, G. (1973). Developmental Biology of the Sea Urchin Embryo, New York: Academic Press.

    Google Scholar 

  • Hagstrom, B. E. and S. Lonning (1969). Time-lapse and electron microscopic studies of sea urchin micromeres. Protoplasma 68, 271–288.

    Article  Google Scholar 

  • Hartley, R. S., R. E. Rempel and J. L. Maller (1996). In vivo regulation of the early embryonic cell cycle in Xenopus. Dev. Biol. 173, 408–419.

    Article  Google Scholar 

  • Horstadius, S. (1973). Experimental Embryology of Echinoderms, Oxford: Clarendon Press.

    Google Scholar 

  • King, W. R., R. J. Deshaies, J. Peters and M. W. Kirschner (1996). How proteolysis drives the cell cycle. Science 274, 1652–1659.

    Article  Google Scholar 

  • Kominami, T. and M. Takaichi (1998). Unequal division at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos. Dev. Growth Differ. 40, 545–553.

    Article  Google Scholar 

  • Kumagai, A., Z. Guo, K. H. Emami, S. X. Wang and W. G. Dunphy (1998). The Xenopus Chk1 protein kinase mediates a caffeine-sensitive pathway of checkpoint control in cell-free extracts. J. Cell Biol. 142, 1559–1569.

    Article  Google Scholar 

  • Marlovits, G., C. J. Tyson, B. Novak and J. J. Tyson (1998). Modeling M-phase control in Xenopus oocyte extracts: the surveillance mechanism of unreplicated DNA. Biophys. Chem. 72, 169–184.

    Article  Google Scholar 

  • Mastro, A. M. and A. D. Keith (1984). Diffusion in the aqueous compartment. J. Cell Biol. 99, 180s–187s.

    Article  Google Scholar 

  • Masuda, M. (1979). Species specific pattern of ciliogenesis in developing sea urchin embryos. Dev. Growth Differ. 21, 545–552.

    Article  Google Scholar 

  • Masuda, M. and H. Sato (1984). Asynchronization of cell division is concurrently related with ciliogenesis in sea urchin blastulae. Dev. Growth Differ. 26, 281–294.

    Article  Google Scholar 

  • Murray, A. and T. Hunt (1993). The Cell Cycle, An Introduction, New York: Freeman.

    Google Scholar 

  • Nemer, M. and E. W. Stuebing (1996). Wee1-like Cdk tyrosine kinase mRNA level is regulated temporally and spatially in sea urchin embryos. Mech. Dev. 58, 75–88.

    Article  Google Scholar 

  • Newport, J. and M. Kirschner (1982a). A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686.

    Article  Google Scholar 

  • Newport, J. and M. Kirschner (1982b). A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30, 687–696.

    Article  Google Scholar 

  • Novak, B. and J. J. Tyson (1993). Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106, 1153–1168.

    Google Scholar 

  • O’Connell, M. J., J. M. Raleigh, H. M. Verkade and P. Nurse (1997). Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J. 16, 545–554.

    Article  Google Scholar 

  • Parisi, E., S. Filosa, B. De Petrocellis and A. Monroy (1978). The pattern of cell division in the early development of the sea urchin Paracentrotus lividus. Dev. Biol. 65, 38–49.

    Article  Google Scholar 

  • Parisi, E., S. Filosa and A. Monroy (1979). Actinomycin D—disruption of the mitotic gradient in the cleavage stages of the sea urchin embryo. Dev. Biol. 72, 167–174.

    Article  Google Scholar 

  • Parisi, E., S. Filosa and A. Monroy (1981). Spatial-temporal coordination of mitotic activity in developing sea urchin embryos, in Chaos and Order in Nature, H. Haken (Ed.), Berlin: Springer-Verlag, pp. 208–215.

    Google Scholar 

  • Smythe, J. W. and J. Newport (1992). Coupling of mitosis to the completion of S phase in Xenopus occurs via modulation of the tyrosine kinase that phosphorylates p34cdc2. Cell 68, 787–797.

    Article  Google Scholar 

  • Yasuda, G. K., J. Baker and G. Schubiger (1991). Temporal regulation of gene expression in the blastoderm Drosophila embryo. Genes Dev. 5, 1800–1812.

    Google Scholar 

  • Yasuda, G. K. and G. Schubiger (1992). Temporal regulation in the early embryo: is MBT too good to be true? Trends Genet. 8, 124–126.

    Google Scholar 

  • Zubay, G. (1983). Biochemistry, Reading, MA: Addison-Wesley, pp. 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Tyson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciliberto, A., Tyson, J.J. Mathematical model for early development of the sea urchin embryo. Bull. Math. Biol. 62, 37–59 (2000). https://doi.org/10.1006/bulm.1999.0129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0129

Keywords

Navigation