Skip to main content
Log in

A model of cell cycle behavior dominated by kinetics of a pathway stimulated by growth factors

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A modified version of a previously developed mathematical model [Obeyesekere et al., Cell Prolif. (1997)] of the G1-phase of the cell cycle is presented. This model describes the regulation of the G1-phase that includes the interactions of the nuclear proteins, RB, cyclin E, cyclin D, cdk2, cdk4 and E2F. The effects of the growth factors on cyclin D synthesis under saturated or unsaturated growth factor conditions are investigated based on this model. The solutions to this model (a system of nonlinear ordinary differential equations) are discussed with respect to existing experiments. Predictions based on mathematical analysis of this model are presented. In particular, results are presented on the existence of two stablesolutions, i. e., bistability within the G1-phase. It is shown that this bistability exists under unsaturated growth factor concentration levels. This phenomenon is very noticeable if the efficiency of the signal transduction, initiated by the growth factors leading to cyclin D synthesis, is low. The biological significance of this result as well as possible experimental designs to test these predictions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, Y., E. S. Knudsen and J. Y. Wang (1996). Cells arrested in G1 by the v-Abl tyrosine kinase do not express cyclin A despite the hyperphosphorylation of RB. J. Biol. Chem. 271, 19637–19640.

    Google Scholar 

  • DeGregori, J., T. Kowalik and J. R. Nevins (1995). Cellular targets for activation by the E2F1 transcription factor include DNA synthesis and G1/S-regulatory genes. Mol. Cell. Biol. 15, 4215–4224.

    Google Scholar 

  • Doedel, E. J., A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede and X. Wang (1997). AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont).

  • Goldbeter, A. (1991). A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl. Acad. Sci. U. S. A. 88, 9107–9111.

    Article  Google Scholar 

  • Hatzimanikatis, V., K. H. Lee, W. A. Renner and J. E. Bailey (1995). A mathematical model for the G1/S transition of the Mammalian Cell Cycle. BioTechnol. Lett. 17, 669–674.

    Article  Google Scholar 

  • Herrera, R. E., V. P. Sah, B. O. Williams, T. P. Mäkelä, R. A. Weinberg and T. Jacks (1996). Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in RB-deficient fibroblasts. Mol. Cell. Biol. 16, 2402–2407.

    Google Scholar 

  • Hunter, T. and J. Pines (1995). Cyclins and cancer. II: cyclin D and CDK inhibitors come of age. Cell 79, 573–582.

    Article  Google Scholar 

  • Hyver, C. and H. Le Guyader (1990). MPF and cyclin: modelling of the cell cycle. Biosystems 24, 85–90.

    Article  Google Scholar 

  • Johnson, D. G., W. D. Cress, L. Jakoi and J. R. Nevins (1994). Oncogenic capacity of the E2F1 gene. Proc. Natl. Acad. Sci. U. S. A. 91, 12823–12827.

    Google Scholar 

  • Johnson, D. G., J. K. Schwarz, W. D. Cress and J. R. Nevins (1993). Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365, 349–352.

    Article  Google Scholar 

  • Kohn, K. W. (1998). Functional capabilities of molecular network components controlling the mammalian G1/S cell cycle phase transition. Oncogene 16, 1065–1075.

    Article  Google Scholar 

  • Lukas, J., T. Herzinger, K. Hansen, M. C. Moroni, D. Resnitsky, K. Helin, S. I. Reed and J. Bartek (1997). Cyclin E-induced S phase without activation of the pRB/E2F pathway. Genes Dev. 11, 1479–1492.

    Google Scholar 

  • Nevins, J. R. (1992). E2F: a link between the RB tumor suppressor protein and viral oncoproteins. Science 258, 424–429.

    Google Scholar 

  • Nevins, J. R. (1998). Toward an understanding of the functional complexity of the E2F and Retinoblastoma families. Cell Growth and Diff. 9, 585–593.

    Google Scholar 

  • Norel, R. and Z. Agur (1991). A model for the adjustment of the mitotic clock by cyclin and MPF levels. Science 251, 1076–1078.

    Google Scholar 

  • Novak, B. and J. J. Tyson (1995). Quantitative analysis of a molecular model of the mitotic control in fission yeast. J. Theor. Biol. 173, 283–305.

    Article  Google Scholar 

  • Obeyesekere, M. N, J. R. Herbert and S. O. Zimmerman (1995). A model of the G1 phase of the cell cycle incorporating cyclin E/cdk2 complex and Retinoblastoma protein. Oncogene 11, 1199–1205.

    Google Scholar 

  • Obeyesekere, M. N., E. S. Knudsen, J. Y. J. Wang and S. O. Zimmerman (1997). A mathematical model of the regulation of the G1 phase of RB+/+ and RB−/− mouse embryonic fibroblasts and an osteosarcoma cell line. Cell Prolif. 30, 171–194.

    Article  Google Scholar 

  • Obeyesekere, M. N., S. L. Tucker and S. O. Zimmerman (1994). A model for regulation of the cell cycle incorporating cyclin A, cyclin B and their complexes. Cell Prolif. 27, 105–113.

    Google Scholar 

  • Ohtsubo, M., A. M. Theodoras, J. Schumacher, J. M. Roberts and M. Pagano (1995). Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol. Cell. Biol. 15, 2612–2624.

    Google Scholar 

  • Romond, P. C., J. M. Guilmot and A. Goldbeter (1994). The mitotic oscillator: temporal self-organization in a phosphorylation-dephosphorylation enzymatic cascade. Ber. Bunsenges. Phys. Chem. 98, 1152–1159.

    Google Scholar 

  • Thron, C. D. (1991). Mathematical analysis of a model of the mitotic clock. Science 254, 122–123.

    Google Scholar 

  • Thron, C. D. (1994). Theoretical dynamics of the cyclin B—MPF system: a possible role for p13suc1. BioSys. 32, 97–109.

    Article  Google Scholar 

  • Thron, C. D. (1997). Bistable biochemical switching and the control of the events of the cell cycle. Oncogene 15, 317–325.

    Article  Google Scholar 

  • Tyson, J. J. (1991). Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. Natl. Acad. Sci. U. S. A. 88, 7328–7332.

    Article  Google Scholar 

  • Tyson, J. J., B. Novak, K. Chen and J. Val (1995). Checkpoints in the cell cycle from a modeler’s perspective. Prog. Cell Cycle Res. 1, 1–8.

    Google Scholar 

  • Wang, J. Y., E. S. Knudsen and P. J. Welch (1994). The Retinoblastoma tumor suppressor protein. Adv. Canc. Res. 64, 25–85.

    Article  Google Scholar 

  • Weinberg, R. A. (1995). The Retinoblastoma protein and cell cycle control. Cell 81, 323–330.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandri N. Obeyesekere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obeyesekere, M.N., Zimmerman, S.O., Tecarro, E.S. et al. A model of cell cycle behavior dominated by kinetics of a pathway stimulated by growth factors. Bull. Math. Biol. 61, 917–934 (1999). https://doi.org/10.1006/bulm.1999.0118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0118

Keywords

Navigation