Skip to main content
Log in

Resonant population cycles in temporally fluctuating habitats

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Experiments with the flour beetle Tribolium have revealed that animal numbers were larger in cultures grown in a periodically fluctuating volume of medium than in cultures grown in a constant volume of the same average size. In this paper we derive and analyze a discrete stage-structured mathematical model that explains this phenomenon as a kind of resonance effect. Habitat volume is incorporated into the model by the assumption that all rates of cannibalism (larvae on eggs, adults on eggs and pupae) are inversely proportional to the volume of the culture medium. We tested this modeling assumption by conducting and statistically analyzing laboratory experiments. For parameter estimates derived from experimental data, our model indeed predicts, under certain circumstances, a larger (cycle-average) total population abundance when the habitat volume periodically fluctuates than when the habitat volume is held constant at the average volume. The model also correctly predicts certain phase relationships and transient dynamics observed in data. The analyses involve a thorough integration of mathematics, statistical methods, biological details and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbosa, P. and J. C. Shultz (1987). Insect Outbreaks, New York: Academic Press.

    Google Scholar 

  • Bardi, M. (1983). An equation of growth of a single species with realistic dependence on crowding and seasonal factors. J. Math. Biol. 17, 33–43.

    Article  MATH  MathSciNet  Google Scholar 

  • Caswell, H. and M. C. Trevisan (1991). Sensitivity analysis of periodic matrix models. Ecology 75, 1299–1303.

    Article  Google Scholar 

  • Costantino, R. F. and R. A. Desharnais (1991). Population Dynamics and the Tribolium Model: Genetics and Demography, New York: Springer-Verlag.

    Google Scholar 

  • Costantino, R. F., J. M. Cushing, B. Dennis and R. A. Desharnais (1995). Experimentally induced transitions in the dynamic behavior of insect populations. Nature 375, 227–230.

    Article  Google Scholar 

  • Costantino, R. F., R. A. Desharnais, J. M. Cushing and B. Dennis (1997). Chaotic dynamics in an insect population. Science 275, 389–391.

    Article  Google Scholar 

  • Crombie, A. C. (1943). The effect of crowding upon the natality of grain-infesting insects. Proc. Zool. Soc. Lond. A 113, 77–98.

    Google Scholar 

  • Cushing, J. M. (1977). Periodic time-dependent predator prey systems. SIAM J. Appl. Math. 23, 972–979.

    Google Scholar 

  • Cushing, J. M. (1982). Periodic Kolomogov systems. SIAM J. Math. Anal. 13, 811–827.

    Article  MATH  MathSciNet  Google Scholar 

  • Cushing, J. M. (1984). Periodic two-predator, one-prey interactions and the time sharing of a resource niche. SIAM J. Appl. Math. 44, 392–410.

    Article  MATH  MathSciNet  Google Scholar 

  • Cushing, J. M. (1986). Periodic Lotka-Volterra competition equations. J. Math. Biol. 24, 381–403.

    Article  MATH  MathSciNet  Google Scholar 

  • Cushing, J. M. (1987). Oscillatory population growth in periodic environments. Theor. Pop. Biol. 30, 289–308.

    Article  MathSciNet  Google Scholar 

  • Cushing, J. M. (1995). Systems of difference equations and structured population dynamics, in Proceedings of the First International Conference on Difference Equations (N. Saber, R. Elaydi, G. L. Graef, A. C. Peterson, (eds), Gordon and Breach Publishers, pp. 123–132.

  • Cushing, J. M. (1998). Periodically forced nonlinear systems of difference equations. J. Difference Equations & Applications, in press.

  • Cushing, J. M., B. Dennis, R. A. Desharnais and R. F. Costantino (1996). An interdisciplinary approach to understanding nonlinear ecological dynamics. Ecol. Modelling 92, 111–119.

    Article  Google Scholar 

  • Cushing, J. M., B. Dennis, R. A. Desharnais and R. F. Costantino (1998). Moving toward an unstable equilibrium: saddle nodes in population systems. J. Anim. Ecol., in press.

  • deMottoni, P. and A. Schiaffino (1982). Competition systems with periodic coefficients: a geometrical approach. J. Math. Biol. 11, 319–335.

    Article  MathSciNet  Google Scholar 

  • Dennis, B. and R. F. Costantino (1988). Analysis of steady-state populations with the gamma abundance model: application to Tribolium. Ecology 69, 1200–1213.

    Article  Google Scholar 

  • Dennis, B., P. L. Munholland and J. M. Scott (1991). Estimation of growth and extinction parameters for endangered species. Ecol. Monogr. 61, 115–143.

    Article  Google Scholar 

  • Dennis, B., R. A. Desharnais, J. M. Cushing and R. F. Costantino (1995). Nonlinear demographic dynamics: mathematical models, statistical methods, and biological experiments. Ecol. Monogr. 65, 261–281.

    Article  Google Scholar 

  • Dennis, B., R. A. Desharnais, J. M. Cushing and R. F. Costantino (1997). Transitions in population dynamics: equilibria to periodic cycles to aperiodic cycles. J. Anim. Ecol. 66, 704–729.

    Google Scholar 

  • Fretwell, S. D. (1972). Populations in a Seasonal Environment, Princeton: Princeton University Press.

    Google Scholar 

  • Henson, S. M. (1996). Existence and stability of nontrivial periodic solutions of periodically forced discrete dynamical systems. J. Difference Equations & Applications 2, 315–331.

    MATH  MathSciNet  Google Scholar 

  • Henson, S. M. and J. M. Cushing (1997). The effect of periodic habitat fluctuations on a nonlinear insect population model. J. Math. Biol. 36, 201–226.

    Article  MathSciNet  MATH  Google Scholar 

  • Jillson, D. A. (1980). Insect populations respond to fluctuating environments. Nature 288, 699–700.

    Article  Google Scholar 

  • Klimko, L. A. and P. I. Nelson (1978). On conditional least squares estimation for stochastic processes. Ann. Statistics 6, 629–642.

    MathSciNet  MATH  Google Scholar 

  • Koch, A. L. (1974). Competitive coexistence of two predators utilizing the same prey under constant environmental conditions, J. Theor. Biol. 44, 373–386.

    Article  Google Scholar 

  • Landahl, H. D. (1955). A mathematical model for the temporal pattern of a population structure, with particular reference to the flour beetle. Bull. Math. Biophys. 17, 63–77.

    Google Scholar 

  • Lloyd, M. (1968). Self regulation of adult numbers of cannibalism in two laboratory strains of flour beetles (Tribolium castaneum), Ecology 49, 245–259.

    Article  Google Scholar 

  • MacArthur, R. H. (1968). Selection for life tables in periodic environments. Am. Nat. 102, 181–189.

    Article  Google Scholar 

  • McFadden, C. S. (1991). A comparative demographic analysis of clonal reproduction in a temperate soft coral. Ecology 72, 1849–1866.

    Article  Google Scholar 

  • Mertz, D. B. and R. B. Davies (1968). Cannibalism of the pupal stage by adult flour beetles: An experiment and a stochastic model. Biometrics 24, 247–275.

    Google Scholar 

  • May, R. M. (1973). Stability and Complexity in Model Ecosystems, Princeton University Press.

  • May, R. M. (Ed.) (1976). Theoretical Ecology. W. B. Saunders, p. 23.

  • Morris, R. F. (1963). The dynamics of epidemic spruce budworm populations. Mem. Entomol. Can. 31, 1–332.

    Google Scholar 

  • Neyman, J., T. Park and E. L. Scott (1956). Struggle for existence, the Tribolium model: Biological and statistical aspects. In: Neyman, J. (ed) Proc. Third Berkely Symp. Stat. Prob., Univ. California Press, pp. 41–79.

  • Namba, T. (1984). Competitive co-existence in a seasonally fluctuating environment. J. Theor. Biol. 111, 369–386.

    MathSciNet  Google Scholar 

  • Nisbet, R. M. and W. S. C. Gurney (1976). Population dynamics in a periodically varying environment. J. Theor. Biol. 56, 459–475.

    Google Scholar 

  • Nisbet, R. M. and W. S. C. Gurney (1982). Modelling Fluctuating Populations. New York: John Wiley.

    MATH  Google Scholar 

  • Park, T., J. R. Ziegler, D. L. Ziegler and D. B. Mertz (1974). The cannibalism of eggs by Tribolium larvae. Physiol. Zool. 47, 37–58.

    Google Scholar 

  • Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling (1992). Numerical Recipes: The Art of Scientific Computing, Cambridge: Cambridge University Press.

    Google Scholar 

  • Read, T. R. C. and N. A. C. Cressie (1988). Goodness-of-fit Statistics for Discrete Multivariate Data, New York: Springer Verlag.

    MATH  Google Scholar 

  • Renshaw, E. (1989). Modelling Biological Populations in Space and Time, Cambridge: Cambridge University Press.

    Google Scholar 

  • Rosenblat, S. (1980). Population models in a periodically fluctuating environment. J. Math. Biol. 9, 23–36.

    Article  MATH  MathSciNet  Google Scholar 

  • Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics, New York: John Wiley.

    MATH  Google Scholar 

  • Smith, H. L. (1981). Competitive coexistence in an oscillating chemostat. SIAM J. Appl. Math. 40, 498–522.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, H. L. and P. Waltman (1995). The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Stanley, J. (1932). A mathematical theory of the growth of populations of the flour beetle, Tribolium confusum, Duv. Can. J. Res. 6, 632–671.

    Google Scholar 

  • Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach, Oxford: Oxford University Press.

    Google Scholar 

  • Tuljapurkar, S. D. (1990). Population Dynamics in Variable Environments, New York: Springer-Verlag.

    MATH  Google Scholar 

  • Wellington, W. G. (1964). Qualitative changes in populations in unstable environments. Can. Entomol. 96, 436–451.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Cushing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costantino, R.F., Cushing, J.M., Dennis, B. et al. Resonant population cycles in temporally fluctuating habitats. Bull. Math. Biol. 60, 247–273 (1998). https://doi.org/10.1006/bulm.1997.0017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1997.0017

Keywords

Navigation