Skip to main content
Log in

Selection dynamics in autocatalytic systems: Templates replicating through binary ligation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The theory of autocatalytic binary ligation is reviewed within the context of a consistently applied Michaelis-Menten quasi-steady-state approximation to obtain explicit analytical results describing time-course data from experiments. A detailed protocol for the step-wise elucidation of a minimal set of experimental parameters is outlined. The kinetic equations are then generalized to cases of self-and cross-catalysis among an arbitrary number of different templates and applied to experiments involving just two templates. Depending on the values of various kinetic parameters such systems can display exclusionary Darwinian selection corresponding to an exponential growth law, selective coexistence or coexistence of all species characteristic of a parabolic growth law; the intermediate behaviour arises as a property of the full mechanism analysed here. Our results are applicable to the classical case of self-replicating nucleic acids and their analogues as well as to newly discovered self-replicating peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achilles, T. and G. von Kiedrowski (1993). A self-replicating system from three starting materials. J. Angew. Chem. Int. Edn. engl. 32, 1198–1201.

    Article  Google Scholar 

  • Biebricher, C., M. Eigen, and W. C. Gardiner, Jr (1991). Quantitative analysis of selection and mutation in self-replicating RNA, in Biologically Inspired Physics, L. Peliti (Ed.), New York: Plenum Press, pp. 317–337.

    Google Scholar 

  • Biebricher, C. K., M. Eigen, W. C. Gardiner Jr and R. Lute (1985). Kinetics of RNA replication: Plus-minus asymmetry and double strand formation. Biochemistry 24, 3186–3194.

    Article  Google Scholar 

  • Borghans, J. A. M., R. J. de Boer, and L. A. Segel (1996). Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63.

    Article  MATH  Google Scholar 

  • Eigen, M. (1971). Selforganization of matter and the evolution of macromolecules. Naturwiss. 58, 465–523.

    Article  Google Scholar 

  • Eigen, M., J. S. McCaskill, and P. Schuster. The molecular quasi-species. Adv. Chem. Phys. 75, 149–263.

  • Eigen, M. and P. Schuster (1979). The Hypercycle. New York, Berlin: Springer-Verlag.

    Google Scholar 

  • Famulok, M., J. Nowick, and J. Rebek Jr (1992). Self-replicating systems. Act. Chim. Scand. 46, 315–324.

    Article  Google Scholar 

  • Hecht, R., R. Happel, P. Schuster, and P. F. Stadler (1997). Autocatalytic networks with intermediates I: Irreversible reactions. Math. Biosc. 140, 33–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Hirsch, M. W. and S. Smale (1974). Differential Equations, Dynamical Systems and Linear Algebra. New York: Academic Press.

    MATH  Google Scholar 

  • Hofbauer, J. (1985). The selection mutation equation. J. Math. Biol. 23, 41–53.

    MATH  MathSciNet  Google Scholar 

  • Hofbauer, J. and K. Sigmund (1988). Dynamical Systems and the Theory of Evolution, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Hutson, V. and K. Schmitt (1992). Permanence and the dynamics of biological systems. Math. Biosc. 111, 1–71.

    Article  MathSciNet  MATH  Google Scholar 

  • James, K. D. and A. D. Ellington (1995). The search for missing links between self-replicating nucleic acids and the RNA world. Origins Life Evol. Biosphere 25, 515–530.

    Article  Google Scholar 

  • James, K. D. and A. D. Ellington (1997). Catalysis in the RNA world, in The Molecular Origins of Life, A. Brack (Ed.), Cambridge: Cambridge University Press.

    Google Scholar 

  • Kauffman, S. A. (1996). Investigations, Technical report, Santa Fe Institute, Santa Fe, NM. #96-08-072.

  • Lee, D. H., J. R. Granja, J. A. Martinez, K. Severin, and M. R. Ghadiri (1996). A self-replicating peptide. Nature 382, 525–528.

    Article  Google Scholar 

  • Lee, D. H., K. Severin, Y. Yokobayashi, and M. R. Ghadiri (1997). Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature 390, 591–594.

    Article  Google Scholar 

  • Michaelis, L. and M. I. Menten (1913). Die Kinetic der Invertinwirkung. Biochem. Z. 49, 333–369.

    Google Scholar 

  • Rotello, V., J.-I. Hong, and J. Rebek Jr (1991). Sigmoidal growth in a self-replicating system. J. Amer. Chem. Soc. 113, 9422–9424.

    Article  Google Scholar 

  • Schuster, P., K. Sigmund, and R. Wolff. Dynamical systems under constant organization III: Cooperative and competitive behaviour of hypercycles. J. Diff. Eqns 32, 357–368.

  • Segel, L. A. and M. Slemrod (1989). The quasi-steady state assumption: a case study in perturbation. SIAM Rev. 31 446–477.

    Article  MathSciNet  MATH  Google Scholar 

  • Sievers, D. and G. von Kiedrowski (1994). Self-replication of complementary nucleotide-based oligomers. Nature 369, 221–224.

    Article  Google Scholar 

  • Stadler, B. M. R. and P. F. Stadler (1991). Dynamics of small autocatalytic reaction networks III: Monotonous growth functions. Bull. Math. Biol. 53, 469–485.

    Article  MATH  Google Scholar 

  • Stadler, P. F. (1991). Complementary replication. Math. Biosci. 107, 83–109.

    Article  MATH  MathSciNet  Google Scholar 

  • Stadler, P. F., W. Schnabl, C. V. Forst, and P. Schuster (1995). Dynamics of autocatalytic reaction networks II: Analytically treatable special cases. Bull. Math. Biol. 57, 21–61.

    Article  MATH  Google Scholar 

  • Stadler, P. F. and P. Schuster (1992). Mutation in autocatalytic networks—an analysis based on perturbation theory. J. Math. Biol. 30, 597–631.

    Article  MathSciNet  MATH  Google Scholar 

  • Szathmáry, E. and I. Gladkih (1989). Sub-exponential growth and coexistence of non-enzymatically replicating templates. J. Theor. Biol. 138, 55–58.

    Google Scholar 

  • Terfort, A. and G. von Kiedrowski (1992). Self-replication by condensation of 3-aminobenzamidines and 2-formylphenoxyacetic acids. Angew. Chem. Int. Ed. engl. 31, 654–665.

    Article  Google Scholar 

  • Varga, S. and E. Szathmáry (1997). An extremum principle for parabolic competition. Bull. Math. Biol. 59, 1145–1154.

    Article  MATH  Google Scholar 

  • von Kiedrowski, G. (1986). A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25, 932–935.

    Article  Google Scholar 

  • von Kiedrowski, G. (1993). Minimal replicator theory I: Parabolic versus exponential growth, in Bioorganic Chemistry Frontiers, Col. 3, Berlin, Heidelberg: Springer-Verlag, pp. 115–146.

    Google Scholar 

  • von Kiedrowski, G., B. Wlotzka, and I. Helbing (1989). Sequence dependence of template-directed syntheses of hexadeoxynucleotide derivatives with 3’-5’ pyrophosphate linkage. J. Angew. Chem. Int. Edn. engl. 28, 1235–1237.

    Article  Google Scholar 

  • Zielinski, W. S. and L. E. Orgel. Autocatalytic synthesis of a tetranucleotide analogue. Nature 327, 346–347.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Wills.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wills, P.R., Kauffman, S.A., Stadler, B.M.R. et al. Selection dynamics in autocatalytic systems: Templates replicating through binary ligation. Bull. Math. Biol. 60, 1073–1098 (1998). https://doi.org/10.1006/S0092-8240(98)90003-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/S0092-8240(98)90003-9

Keywords

Navigation