Skip to main content

Abstract

The broad aim of this set of two articles (chapters 21 and 22) on tropical cyclone theory is to provide graduate students and post-doctoral researchers from India and other parts of the world with state-of-the-art knowledge and understanding of tropical cyclone dynamics. It is hoped that this knowledge base will be a useful tool to help these students and post docs understand and improve the forecasts of tropical cyclone genesis and intensification in various parts of the world affected by these storms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A recent study by Montgomery et al. (2015) has revisited this issue using a state-of-the-art cloud model and affirms the conclusions of Montgomery et al. (2009).

  2. 2.

    The term “rotating convection” is used in lieu of vortical hot towers (VHTs), which were first described in Hendricks et al. (2004) and later studied in Montgomery et al. (2006a) and Nguyen et al. (2008), among others. To avoid any potential controversy that surrounds the definition of VHTs, the term “rotating convection” will be used throughout the rest of these lectures. Usage of the term VHT has given some the impression that only deep convection (>12 km cloud depth) has strong rotation. However, a recent study by Wissmeier and Smith (2011) showed that even moderate convection (6-12 km depth) in a background rotation rate typical of the undisturbed tropical atmosphere can have a comparable impact on the stretching of low-level relative vorticity in comparison to intense deep convection. Thus, a broad definition is required for studying the aggregate impact of these convective elements on tropical cyclone intensification.

  3. 3.

    It turns out that the number of updrafts that form initially increases as the horizontal resolution increases, but the subsequent evolutionary picture is largely similar.

  4. 4.

    The restoring mechanism for vortex Rossby waves and shear instabilities related thereto is associated with the radial and vertical gradient of dry Ertel potential vorticity of the system-scale vortex.

  5. 5.

    Recent work of Fang and Zhang (2011) has broadly verified the foregoing conclusions, but show a more modest variability in wind-speed intensity due to small perturbations in the initial condition. Aside from numerical model differences and spatial resolution dependencies summarized here, the difference in magnitudes of the intensity fluctuations is believed to be due in part to the retention of liquid water in the more complex microphysics option used in their WRF simulation. Nguyen et al. (2008) attributed the lower intensity found in their own ‘warm-rain’ simulations compared to the pseudo-adiabatic limit to a reduction in the convective instability that results from downdrafts associated with the rain process and to the reduced buoyancy in clouds on account of water loading. Therefore it seems scientifically plausible that the associated water loading in the low-to-mid troposphere that tempers the convective updrafts during intensification would temper also the maximum wind fluctuations in these more complete cloud representations.

References

  • Anthes, R.A., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. Meteorological Monographs of the American Meteorological Society.

    Google Scholar 

  • Bao, J.W., S.G. Gopalakrishnan, S.A. Michelson and M.T. Montgomery, 2012: Impact of physics representations in the HWRFX on simulated hurricane structure and pressure-wind relationships. Mon. Wea. Rev., 140, 3278-3299.

    Article  Google Scholar 

  • Bell, M.M. and M.T. Montgomery, 2008: Observed structure, evolution, and potential intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 65, 2025-2046.

    Google Scholar 

  • Bui, H.H., R.K. Smith, M.T. Montgomery and J. Peng, 2009: Balanced and unbalanced aspects of tropical-cyclone intensification. Q. J. R. Meteorol. Soc., 135, 1715-1731.

    Article  Google Scholar 

  • Braun, S.A. M.T. Montgomery and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 19-42

    Article  Google Scholar 

  • Carrier, G.F., 1971: The intensification of hurricanes. J. Fluid Mech., 49, 145-148.

    Article  Google Scholar 

  • Charney, J.G. and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68-75.

    Article  Google Scholar 

  • Chen, Y. and M.K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58, 2128-2145.

    Article  Google Scholar 

  • Chen, Y., G. Brunet and M.K. Yau, 2003: Spiral Bands in a Simulated Hurricane. Part II: Wave Activity Diagnostics. J. Atmos. Sci., 60, 1240-1256.

    Google Scholar 

  • Corbosiero, K.L., J. Molinari, A.R. Aiyyer and M.L. Black, 2006: The Structure and Evolution of Hurricane Elena (1985). Part II: Convective Asymmetries and Evidence for Vortex Rossby Waves. Mon. Wea. Rev., 134, 3073-3091.

    Article  Google Scholar 

  • Craig, G.C. and S.L. Gray, 1996: CISK or WISHE as a mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 3528-3540.

    Article  Google Scholar 

  • Davis, C.A. and L.F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 1100-1124.

    Article  Google Scholar 

  • Dudhia, J. 1993: A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493-1513.

    Article  Google Scholar 

  • Emanuel, K.A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585-604.

    Article  Google Scholar 

  • Emanuel, K.A., 1989: The finite amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 3431-3456.

    Article  Google Scholar 

  • Emanuel, K.A., 1994: Atmospheric convection. Oxford University Press.

    Google Scholar 

  • Emanuel, K.A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976.

    Article  Google Scholar 

  • Emanuel, K.A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 1014-1026.

    Article  Google Scholar 

  • Emanuel, K.A., 2003: Tropical Cyclones. Annu. Rev. Earth Planet. Sci., 31, 75-104.

    Article  Google Scholar 

  • Emanuel, K.A., 2012: Self-Stratification of Tropical Cyclone Outflow. Part II: Implications for Storm Intensification. J. Atmos. Sci., 69, 988-996.

    Article  Google Scholar 

  • Fang, J. and F. Zhang, 2011: Evolution of multiscale vortices in the development of Hurricane Dolly (2008). J. Atmos. Sci., 68, 103-122.

    Article  Google Scholar 

  • Gopalakrishnan, S.G., F. Marks, X. Zhang, J.W. Bao, K.S. Yeh and R. Atlas, 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 1762-1784.

    Article  Google Scholar 

  • Grell, A., J. Dudhia and D.R. Stauffer, 1995: A description of the fifth-generation Penn State/NCEP mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398_STR. Guinn, T. and W.H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 3380- 3403.

    Google Scholar 

  • Hendricks, E.A., M.T. Montgomery and C.A. Davis, 2004: On the role of “vortical” hot towers in formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 1209-1232.

    Article  Google Scholar 

  • Holton, J.R., 2004: An introduction to dynamic meteorology. Fourth Edition. Academic Press, London.

    Google Scholar 

  • Holton, J.R. and G. Hakim, 2012: An introduction to dynamic meteorology. Fifth Edition. Academic Press, London.

    Google Scholar 

  • Houze, R.A. Jr, S.S. Chen, B.F. Smull, W.C. Lee and M.M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235-1239.

    Article  Google Scholar 

  • Jordan, C.L. 1958: Mean soundings for the West Indies area. J. Meteorol., 15, 91-97.

    Article  Google Scholar 

  • Kossin, J., B.D. McNoldy and W.H. Schubert, 2002: Vortical swirls in hurricane eye clouds. Mon. Wea. Rev., 130, 3144-3149.

    Article  Google Scholar 

  • Lorenz, E.N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289-307.

    Article  Google Scholar 

  • Lussier III, L.L., B. Rutherford, M.T. Montgomery, T.J. Dunkerton and M.A. Boothe, 2013: Examining the roles of the easterly wave critical layer and vorticity accretion during the tropical cyclogenesis of Hurricane Sandy. Mon. Wea. Rev., 143, 1703-1722.

    Article  Google Scholar 

  • Marks, F.D., P.G. Black, M.T. Montgomery and R.W. Burpee, 2008: Structure of the Eye and Eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 1237-1259.

    Article  Google Scholar 

  • Martinez, Y.H., 2008: Diagnostic study of hurricane asymmetries using empirical normal modes. Ph.D. thesis. McGill University.

    Google Scholar 

  • Martinez, Y.H., G. Brunet, M.K. Yau and X. Wang, 2011: On the dynamics of concentric eyewall genesis: Spacetime empirical normal modes diagnosis. J. Atmos. Sci., 68, 458-476.

    Article  Google Scholar 

  • McWilliams, J.C., L.P. Graves and M.T. Montgomery, 2003: A formal theory for vortex Rossby waves and vortex evolution. Geophys. Astrophys. Fluid Dynamics, 97, 275-309.

    Article  Google Scholar 

  • Möller, J.D. and M.T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 3366-3387.

    Article  Google Scholar 

  • Montgomery, M.T. and R.J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Q.J.R. Meteorol. Soc., 123, 435-465.

    Article  Google Scholar 

  • Montgomery, M.T., V.A. Vladimirov and P.V. Denissenko, 2002: An experimental study on hurricane mesovortices. J. Fluid. Mech., 471, 1-32.

    Article  Google Scholar 

  • Montgomery, M.T., M.E. Nicholls, T.A. Cram and A.B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355-386.

    Article  Google Scholar 

  • Montgomery, M.T., S.V. Nguyen, R.K. Smith and J. Persing, 2009: Do tropical cyclones intensify by WISHE? Q.J.R. Meteorol. Soc., 135, 1697-1714.

    Article  Google Scholar 

  • Montgomery, M.T. and R.K. Smith, 2014: Paradigms for tropical-cyclone intensification. Australian Meteorological and Oceanographic Journal, Bruce Morton Memorial Volume, in press.

    Google Scholar 

  • Montgomery, M.T., J. Persing and R.K. Smith, 2015: Putting to rest WISHE-ful misconceptions. J. Adv. Model, Earth Syst., 07, DOI: 10.1002/2014MS000362.

    Google Scholar 

  • Nguyen, S.V., R.K. Smith and M.T. Montgomery, 2008: Tropical cyclone intensification and predictability in three dimensions. Q.J.R. Meteorol. Soc., 134, 563-582.

    Article  Google Scholar 

  • Nguyen, C.M., M.J. Reeder, N.E. Davidson, R.K. Smith and M.T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Q.J.R. Meteorol. Soc., 137, 829-844.

    Article  Google Scholar 

  • Nolan, D.S., M.T. Montgomery and L.D. Grasso, 2001: The Wavenumber-One Instability and Trochoidal Motion of Hurricane-like Vortices. J. Atmos. Sci., 58, 3243-3270.

    Article  Google Scholar 

  • Nolan, D.S. and M.T. Montgomery, 2000: The algebraic growth of wavenumber one disturbances in hurricane-like vortices. J. Atmos. Sci., 57, 3514-3538.

    Article  Google Scholar 

  • Ooyama, K.V., 1964: A dynamical model for the study of tropical cyclone development. Geophys. Int., 4, 187-198.

    Google Scholar 

  • Ooyama, K.V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3-40.

    Article  Google Scholar 

  • Ooyama, K.V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369-380.

    Google Scholar 

  • Ooyama, K.V., 1997: Footnotes to ‘Conceptual Evolution’. Extended Abstracts, 22nd Conference on Hurricanes and Tropical Meteorology, American Meteorological Society, Boston.

    Google Scholar 

  • Persing, J., M.T. Montgomery, J.C. McWilliams and R.K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12229-12341.

    Article  Google Scholar 

  • Raymond, D.J. and K.A. Emanuel, 1993: The Kuo cumulus parameterization. In: The representation of cumulus convection in numerical models. Meteorological Monograph No. 46. American Meteorological Society, Boston, Mass. USA.

    Google Scholar 

  • Rotunno, R. and K.A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542-561.

    Article  Google Scholar 

  • Schecter, D.A. and M.T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 64, 314-337.

    Article  Google Scholar 

  • Schubert, W.H., M.T. Montgomery, R.K. Taft, T.A. Guinn, S.R. Fulton, J.P. Kossin and J.P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197-1223.

    Article  Google Scholar 

  • Shapiro, L.J. and M.T. Montgomery, 1993: A three-dimensional balance theory for rapidly-rotating vortices. J. Atmos. Sci., 50, 3322-3335.

    Article  Google Scholar 

  • Shin, S. and R.K. Smith, 2008: Tropical-cyclone intensification and predictability in a minimal three-dimensional model. Q.J.R. Meteorol. Soc., 134, 1661-1671.

    Article  Google Scholar 

  • Smith, R.K., 1997: On the theory of CISK. Q.J.R. Meteorol. Soc., 123, 407-418.

    Article  Google Scholar 

  • Smith, R.K., 2006: Accurate determination of a balanced axisymmetric vortex. Tellus, 58A, 98-103.

    Article  Google Scholar 

  • Smith, R.K., M.T. Montgomery and S. Vogl, 2008: A critique of Emanuel’s hurricane model and potential intensity theory. Q.J.R. Meteorol. Soc., 134, 551-561.

    Article  Google Scholar 

  • Smith, R.K., M.T. Montgomery and S.V. Nguyen, 2009: Tropical cyclone spin up revisited. Q.J.R. Meteorol. Soc., 135, 1321-1335.

    Article  Google Scholar 

  • Smith, R.K. and G.L. Thomsen, 2010: Dependence of tropical cyclone intensification on the boundary-layer representation in a numerical model. Q.J.R. Meteorol. Soc., 136, 1671-1685.

    Article  Google Scholar 

  • Smith, R.K. and M.T. Montgomery, 2010: Hurricane boundary-layer theory. Q.J.R. Meteorol. Soc., 136, 1665-1670.

    Article  Google Scholar 

  • Wang, Y., 2002a: Vortex Rossby waves in a numerical simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 1213-1238.

    Article  Google Scholar 

  • Wang, Y., 2002b: Vortex Rossby waves in a numerical simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 1239-1262.

    Article  Google Scholar 

  • Weckwerth, T.M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 4017-4030.

    Article  Google Scholar 

  • Willoughby, H.E., 1995: Mature structure and evolution. In: Global Perspectives on Tropical Cyclones. WMO/TD No 693 (ed. R.L. Elsberry), World Meteorological Organization, Geneva.

    Google Scholar 

  • Willoughby, H.E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 3053-3067.

    Article  Google Scholar 

  • Wissmeier, U. and R.K. Smith, 2011: Tropical-cyclone convection: The effects of ambient vertical vorticity. Q.J.R. Meteorol. Soc., 137, 845-857.

    Article  Google Scholar 

  • Zhu, H. and R.K. Smith, 2003: Effects of vertical differencing in a minimal hurricane model. Q.J.R. Meteorol. Soc., 129, 1051-1069.

    Article  Google Scholar 

Download references

Acknowledgements

Much of the work presented in this article has been conducted and written in collaboration with my close colleague and friend, Professor Roger K. Smith. The foregoing material is a highly abridged version of the review by Montgomery and Smith (2014) and is based on work carried out with our student and research colleagues over the past several years.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Capital Publishing Company

About this chapter

Cite this chapter

Montgomery, M.T. (2016). Introduction to Hurricane Dynamics: Tropical Cyclone Intensification. In: Mohanty, U.C., Gopalakrishnan, S.G. (eds) Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction. Springer, Dordrecht. https://doi.org/10.5822/978-94-024-0896-6_21

Download citation

Publish with us

Policies and ethics