Skip to main content
  • 1267 Accesses

Abstract

The accuracy of numerical weather prediction (NWP) depends critically on the qualities of the initial conditions and the forecast model. The initial conditions of an NWP model usually come from data assimilation (DA), a procedure that aims to estimate the state and uncertainty of the atmosphere as accurately as possible by combining all available atmospheric information. In other words, DA is known as the process of creating the best estimate of the initial state for NWP models through combining all sources of information, including the first guess from previous short-term model forecasts and observations, along with the associated uncertainties in each source of information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksoy, A., F. Zhang and J.W. Nielsen-Gammon, 2006a: Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, doi:10.1029/2006GL026186.

    Article  Google Scholar 

  • Aksoy, A., F. Zhang and J.W. Nielsen-Gammon, 2006b: Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon. Wea. Rev., 134, 2951-2970.

    Article  Google Scholar 

  • Aksoy, A., F. Zhang, J.W. Nielsen-Gammon and C.C. Epifanio, 2005: Ensemble-based data assimilation for thermally forced circulations. J. Geophys. Res., 110, D16105, doi:10.1029/2004JD005718.

    Article  Google Scholar 

  • Anderson, J.L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884-2903.

    Article  Google Scholar 

  • Barker, D.M., W. Huang, Y.-R. Guo, A. Bourgeois and Q.N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897-914.

    Article  Google Scholar 

  • Berre, L., 2000: Estimation of synoptic and mesoscale forecast error covariances in a limited area model. Mon. Wea. Rev., 128, 644-667.

    Article  Google Scholar 

  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 1013-1043.

    Article  Google Scholar 

  • Buehner, M., P.L. Houtekamer, C. Charette, H.L. Mitchell and B. He, 2010a: Intercomparison of variational data assimilation the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 1550-1566.

    Article  Google Scholar 

  • Buehner, M., P.L. Houtekamer, C. Charette, H.L. Mitchell and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 1567-1586.

    Article  Google Scholar 

  • Caya, A., J. Sun and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 3081-3094.

    Article  Google Scholar 

  • Davis, C. et al., 2004: The Bow-Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 1075-1093.

    Article  Google Scholar 

  • Dirren, S., R.D. Torn and G.J. Hakim, 2007: A data assimilation case study using a limited-area ensemble Kalman filter. Mon. Wea. Rev., 135, 1455-1473.

    Article  Google Scholar 

  • Ehrendorfer, M., 2007: A review of issues in ensemble-based Kalman filtering. Meteor. Z., 16, 795-818.

    Article  Google Scholar 

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162.

    Article  Google Scholar 

  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343-367.

    Article  Google Scholar 

  • Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Filter. Springer.

    Google Scholar 

  • Gaspari, G. and S.E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757.

    Article  Google Scholar 

  • Hamill, T.M., 2006: Ensemble-based atmospheric data assimilation. In: Predictability of Weather and Climate. T. Palmer and R. Hagedorn (Eds). Cambridge University Press, 124-156.

    Google Scholar 

  • Hamill, T.M. and C. Snyder, 2000: A hybrid ensemble Kalman filter 3D variational analysis scheme. Mon. Wea. Rev., 128, 2905-2919.

    Article  Google Scholar 

  • Hawblitzel, D.P., F. Zhang, Z. Meng and C.A. Davis, 2007: Probabilistic evaluation of the dynamics and predictability of a mesoscale convective vortex of 10–13 June 2003. Mon. Wea. Rev., 135, 1544-1563.

    Article  Google Scholar 

  • Houtekamer, P.L. and H.L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796-811.

    Article  Google Scholar 

  • Houtekamer, P.L., H.L. Mitchell and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 2126-2143.

    Article  Google Scholar 

  • Houtekamer, P.L., H.L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604-620.

    Article  Google Scholar 

  • Huang, X.-Y. et al., 2009: Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev., 137, 299-314.

    Article  Google Scholar 

  • Liu, C., Q. Xiao and B. Wang, 2008: An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 136, 3363-3373.

    Article  Google Scholar 

  • Liu, C., Q. Xiao and B. Wang, 2009: An ensemble-based four-dimensional variational data assimilation scheme. Part II: Observing system simulation experiments with Advanced Research WRF (ARW). Mon. Wea. Rev., 137, 1687-1704.

    Article  Google Scholar 

  • Lorenc, A.C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 3183-3203.

    Article  Google Scholar 

  • Meng, Z. and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 1403-1423.

    Article  Google Scholar 

  • Meng, Z. and F. Zhang, 2008a: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVar in a real-data case study. Mon. Wea. Rev., 136, 522-540.

    Article  Google Scholar 

  • Meng, Z. and F. Zhang, 2008b: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVar in a month-long experiment. Mon. Wea. Rev., 136, 3671-3682.

    Article  Google Scholar 

  • Mitchell, H.L., P.L. Houtekamer and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 2791-2808.

    Article  Google Scholar 

  • Parrish, D.F. and J.C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763.

    Article  Google Scholar 

  • Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, W. Wang and J.G. Powers, 2005: A description of the Advanced Research WRF Version 2. NCAR Tech. Note 4681STR.

    Google Scholar 

  • Snyder, C. and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677.

    Article  Google Scholar 

  • Tong, M. and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSSE experiments. Mon. Wea. Rev., 133, 1789-1807.

    Article  Google Scholar 

  • Torn, R.D. and G.J. Hakim, 2008a: Performance characteristics of a pseudo-operational ensemble Kalman filter. Mon. Wea. Rev., 136, 3947-3963.

    Article  Google Scholar 

  • Torn, R.D. and G.J. Hakim, 2009a: Ensemble data assimilation applied to RAINEX observations of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 2817-2829.

    Article  Google Scholar 

  • Wang, X., C. Snyder and T.M. Hamill, 2007: On the theoretical equivalence of differently proposed ensemble-3DVAR hybrid analysis schemes. Mon. Wea. Rev., 135, 222-227.

    Article  Google Scholar 

  • Wang, X., T.M. Hamill, J.S. Whitaker and C.H. Bishop, 2009: A comparison of the hybrid and EnSRF analysis schemes in the presence of model error due to unresolved scales. Mon. Wea. Rev., 137, 3219-3232.

    Article  Google Scholar 

  • Whitaker, J.S. and T.M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913-1924.

    Article  Google Scholar 

  • Whitaker, J.S., T.M. Hamill, X. Wei, Y. Song and Z. Toth, 2008: Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev., 136, 463-482.

    Article  Google Scholar 

  • Yang, S.C., E. Kalnay, B. Hunt and N.E. Bowler, 2009: Weight interpolation for efficient data assimilation with the local ensemble transform Kalman filter. Quart. J. Roy. Meteor. Soc., 135, 251-262.

    Article  Google Scholar 

  • Zhang, F. and C. Snyder, 2007: Ensemble-based data assimilation. Bull. Amer. Meteor. Soc., 88, 565-568.

    Article  Google Scholar 

  • Zhang, F., C. Snyder and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238-1253.

    Article  Google Scholar 

  • Zhang, F., Y. Weng, J.A. Sippel, Z. Meng and C.H. Bishop, 2009a: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105-2125.

    Article  Google Scholar 

  • Zhang, F., Z. Meng and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722-736.

    Article  Google Scholar 

  • Zhang, M. and F. Zhang, 2012: E4DVar: Coupling an ensemble Kalman filter with four dimensional variational data assimilation in a limited-area weather prediction model. Mon.Wea. Rev., 140, 587-600.

    Article  Google Scholar 

  • Zhang, M., F. Zhang, X. Huang and X. Zhang, 2011: Intercomparison of an ensemble Kalman filter with three- and four-dimensional variational data assimilation methods in a limited-area model over the month of June 2003. Mon. Wea. Rev., 139, 566-572.

    Article  Google Scholar 

  • Zhang, S. and J.L. Anderson, 2003: Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus, 55A, 126-147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Capital Publishing Company

About this chapter

Cite this chapter

Zhang, F., Routray, A. (2016). Data Assimilation: Comparison and Hybridization between Ensemble and Variational Methods. In: Mohanty, U.C., Gopalakrishnan, S.G. (eds) Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction. Springer, Dordrecht. https://doi.org/10.5822/978-94-024-0896-6_13

Download citation

Publish with us

Policies and ethics