Skip to main content

Computational Modeling of the Jamaica Bay System

  • Chapter
Prospects for Resilience

Abstract

Computational models are essential tools to support resilience planning for Jamaica Bay, or indeed anywhere (Hawes and Reed, 2006; Pickett et al., 2004; Walker et al., 2002; Gallopin, 2002). Models are simplifications of reality, constructed to highlight the interactions among physical, ecological, and social components of a system. Models connect observations with hypotheses and theories about how physical and social systems work, allowing scientists to articulate and test system understanding against data. Although there are physical and conceptual models, in the early twenty-first century, most models are deployed on computers and are increasingly used in distributed computing environments accessible through the Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adger, W.N. 2003. Social capital, collective action, and adaptation to climate change. Economic Geography 79: 387–404. doi:10.1111/j.1944-8287.2003.tb00220.x.

    Article  Google Scholar 

  • Aerts, J.C., Lin, N., Botzen, W., Emanuel, K., and de Moel, H. 2013. Low-Probability flood risk modeling for New York City. Risk Analysis 33: 772–788. doi:10.1111/risa.12008.

    Article  Google Scholar 

  • Alcamo, J. 2008. Environmental Futures: The Practice of Environmental Scenario Analysis. Amsterdam: Elsevier.

    Google Scholar 

  • Blumberg, A.F., Khan, L.A., and St. John, J.P. 1999. Three-dimensional hydrodynamic model of New York Harbor region. Journal of Hydrological Engineering 125(8): 799–816.

    Article  Google Scholar 

  • Booij, N., Ris, R.C., and Holthuijsen, L.H. 1999. A third-generation wave model for coastal regions, Part I, model description and validation. Journal of Geophysical Research 104: 7649–7666.

    Article  Google Scholar 

  • Buxton, H.T., and Shernoff, P.K. 1995. Ground-water resources of Kings and Queens Counties, Long Island, New York (Open-File Report 92–76). U.S. Geological Survey, Albany, NY.

    Google Scholar 

  • Campbell, L., Svendsen, E., Falxa-Raymond, N., and Baine, G. 2014. Reading the landscape, a reflection on method. PLOT 3: 90–95.

    Google Scholar 

  • Cerco, C.F., and Meyers, M. 2000. Tributary refinements to Chesapeake Bay model. Journal of Environmental Engineering 126(2): 164–174.

    Article  CAS  Google Scholar 

  • Chen, C., Huang, H., Beardsley, R.C., Liu, H., Xu, Q., and Cowles, G. 2007. A finite volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models. Journal of Geophysical Research 112, C03018. doi:10.1029/2006JC003485.

    Google Scholar 

  • Christensen, V., Beattie, A., Buchanan, C., Ma, H., Martell, S.J., et al. 2009. Fisheries Ecosystem Model of the Chesapeake Bay: Methodology, Parameterization, And Model Exploration. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service.

    Google Scholar 

  • City of New York. 2013. A Stronger, More Resilient New York. Mayor’s Office of Long-Term Planning and Sustainability, New York.

    Google Scholar 

  • Cloern, J.E., Knowles, N., Brown, L.R., Cayan, D., Dettinger, M.D., et al. 2011. Projected evolution of California’s San Francisco Bay-Delta-River system in a century of climate change. PLoS ONE 6, e24465. doi:10.1371/journal.pone.0024465.

    Article  CAS  Google Scholar 

  • Dietrich, J.C., Zijlema, M., Westerink, J.J., Holthuijsen, L.H., Dawson, C., et al. 2011. Modeling hurricane waves and storm surge using integrally coupled, scalable computations. Coastal Engineering 58: 45–65. doi:10.1016/j.coastaleng.2010.08.001.

    Article  Google Scholar 

  • DiToro, D.M. 2001. Sediment Flux Modeling. New York, NY: John Wiley & Sons.

    Google Scholar 

  • DiToro, D.M., and Fitzpatrick, J.J. 1993. Chesapeake Bay Sediment Flux Model. Tech. Report EL-93, US Army Corps of Engineers Waterways Experiment Station.

    Google Scholar 

  • Edinger, G.J., Evans, D.J., Gebauer, S., Howard, T.G., Hunt, D.M., and Olivero, A.M. (eds). 2014. Ecological Communities of New York State. Second Edition. A revised and expanded edition of Carol Reschke’s Ecological Communities of New York State. New York State Department of Environmental Conservation, New York.

    Google Scholar 

  • Federal Emergency Management Agency, 2014. Region II Coastal Storm Surge Study Overview. Federal Emergency Management Agency, Washington, D.C.

    Google Scholar 

  • Fischbach, J.R., Lempert, R.J., Molina-Perez, E., Tariq, A.A., Finucane, M.L., Hoss, F. 2015. Managing Water Quality in the Face of Uncertainty: A Robust Decision Making Demonstration for EPA’s National Water Program. Santa Monica, CA: RAND Corporation. http://www.rand.org/pubs/research_reports/RR720.html.

    Google Scholar 

  • Flood, R.D. 2011. High-Resolution Bathymetric and Backscatter Mapping in Jamaica Bay: Final Report to the National Park Service. Stony Brook University, Stony Brook, NY.

    Google Scholar 

  • Gallopin, G. 2002. Planning for resilience: Scenarios, surprises, and branch points. In: Panarchy: Understanding Transformations in Human and Natural Systems. Gunderson, L.H., and Holling, C.S. (eds). Washington, D.C.: Island Press.

    Google Scholar 

  • Georgas, N., and Blumberg, A.F. 2010. Establishing confidence in marine forecast systems: The design and skill assessment of the New York Harbor Observation and Prediction System, Version 3 (NYHOPS v3), paper presented at Eleventh International Conference in Estuarine and Coastal Modeling (ECM11), ASCE, Seattle, Washington.

    Google Scholar 

  • Georgas, N., Orton, P., Blumberg, A., Cohen, L., Zarrilli, D., and Yin, L. 2014. The impact of tidal phase on Hurricane Sandy’s flooding around New York City and Long Island Sound. Journal of Extreme Events. doi:10.1142/S2345737614500067.

    Google Scholar 

  • Groves, D.G., and Lempert, R.J. 2007. A new analytic method for finding policy-relevant scenarios. Global Environmental Change Part A: Human & Policy Dimensions, Vol. 17(1): 73–85.

    Article  Google Scholar 

  • Groves, D.G., and Sharon, C. 2013. Planning tool to support planning the future of coastal Louisiana. In: Louisiana’s 2012 Coastal Master Plan Technical Analysis, Journal of Coastal Research, Special Issue No. 67, 1–15. Peyronnin, N., and Reed, D. (eds). Coconut Creek (Florida).

    Google Scholar 

  • Groves, D.G., Fischbach, J.R., Knopman, D., Johnson, D.R., and Giglio, K. 2014. Strengthening Coastal Planning: How Coastal Regions Could Benefit from Louisiana’s Planning and Analysis Framework. Santa Monica, CA: RAND Corporation. http://www.rand.org/pubs/research_reports/RR437.html.

    Google Scholar 

  • Hamon, W.R. 1961. Estimating potential evapotranspiration. Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers 87: 107–120.

    Google Scholar 

  • Hawes, C., and Reed, C. 2006. Theoretical steps towards modelling resilience in complex systems. In: Computational Science and Its Applications—ICCSA 2006. Gavrilova, M., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., et al. (eds). 644–653. Berlin: Springer.

    Chapter  Google Scholar 

  • Horton, R.M., Gornitz, V., Bader, D.A., et al. 2011. Climate hazard assessment for stakeholder adaptation planning in New York City. Journal of Applied Meteorology and Climatology 50: 2247–2266.

    Article  Google Scholar 

  • Horton, R., Bader, D., Kushnir, Y., Little, C., Blake, R., and Rosenzweig, C. 2015a. New York City Panel on Climate Change 2015 Report, Chapter 1: Climate Observations and Projections. Annals of New York Academy of Sciences 1336: 18–35. doi:10.1111/nyas.12586.

    Article  Google Scholar 

  • Horton, R., Little, C., Gornitz, V., Bader, D., and Oppenheimer, M. 2015b. New York City Panel on Climate Change 2015 Report, Chapter 2: Sea Level Rise and Coastal Storms. Annals of New York Academy of Sciences 1336: 36–44. doi:10.1111/nyas.12593.

    Article  Google Scholar 

  • HydroQual. 2000. Development of a suspension feeding and deposit feeding benthos model for Chesapeake Bay. Prepared for the U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

    Google Scholar 

  • HydroQual. 2002. A Water Quality Model for Jamaica Bay: Calibration of the Jamaica Bay Eutropication Model (JEM), Hydroqual, Inc., Mahway, NJ.

    Google Scholar 

  • HydroQual. 2003. Model Evaluation Group (MEG) Peer Review of the Jamaica Bay Eutrophication Model (JEM). Under subcontract to O’Brien and Gere Engineers, Inc. For the City of New York, Department of Environmental Protection. New York.

    Google Scholar 

  • HydroQual. 2012. Defining Restoration Objectives and Design Criteria for Self-Sustaining Oyster Reefs in Jamaica Bay, HDR/Hydroqual, Mahway, NJ.

    Google Scholar 

  • Isleib, R.R.P.E., and Fitzpatrick, J.J. 2007. The development of a nitrogen control plan for a highly urbanized tidal embayment. Proceedings of the Water Environment Federation, 296–320. doi:10.2175/193864707786619152.

    Google Scholar 

  • Johnson, D.R., Fischbach, J.R., and Ortiz, D.S. 2013. Estimating surge-based flood risk with the Coastal Louisiana Risk Assessment Model. Journal of Coastal Research 2013/07/01, 109–126.

    Article  Google Scholar 

  • Kontis, A.L. 1999. Simulation of freshwater-saltwater interfaces in the Brooklyn-Queens aquifer system, Long Island, New York (USGS Numbered Series No. 98–4067), Water-Resources Investigations Report. U.S. Geological Survey, Reston, VA.

    Google Scholar 

  • Knowles, N., and Lucas, L. 2015. CASCAaDE II Project Final Report: Computational Assessments of Scenarios for Change for the Delta Ecosystem. U.S. Geological Survey, Menlo Park, CA.

    Google Scholar 

  • Marsooli, R., Orton, P.M., Georgas, N., and Blumberg, A.F. 2016a. Three-dimensional hydrodynamic modeling of storm tide mitigation by coastal wetlands. Coastal Engineering 111: 83–94.

    Article  Google Scholar 

  • Marsooli, R., Orton, P.M., Fitzpatrick, J., Georgas, N. and Blumberg, A.F. 2016b. Impact of salt marshes on residence time in Jamaica Bay, NY. Poster presented at the State of the Bay Symposium, June 16.

    Google Scholar 

  • McDonald, M.G., and Harbaugh, A.W. 1988. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model: U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A1.

    Google Scholar 

  • Meixler, M.S., Sanderson, E.W., Fisher, K., Newton, E., and Sacatelli, R. 2015. Modeling biodiversity of the New York coastal urban fringe. Ecological Society of America. Baltimore, MD. August 14.

    Google Scholar 

  • Misut, P.E., and Monti, J., Jr. 1999. Simulation of Ground-Water Flow and Pumpage in Kings and Queens Counties, Long Island, New York (Water-Resources Investigations Report 98–4071). U.S. Geological Survey, Coram, New York.

    Google Scholar 

  • Misut, P.E., and Voss, C.I., 2004. Simulation of subsea discharge to Jamaica Bay in New York City with a three-dimensional, variable density, finite-element model. In: International Conference on Finite Element Models, MODFLOW, and More: Solving Groundwater Problems. Kovar, K., Hrkal, Z., and Bruthans, J. (eds). Czech Republic: Karlovy Vary.

    Google Scholar 

  • Misut, P.E., and Voss, C.I., 2007. Freshwater–saltwater transition zone movement during aquifer storage and recovery cycles in Brooklyn and Queens, New York City, USA. Journal of Hydrology 337: 87–103. doi:10.1016/j.jhydrol.2007.01.035.

    Article  Google Scholar 

  • Mitchell, V., Mein, R., and McMahon, T., 2001. Modelling the urban water cycle. Environmental Modelling and Software 16: 615–629.

    Article  Google Scholar 

  • Morris, J. 2015. The Marsh Equilibrium Model MEM 3.4. http://129.252.139.114/model/marsh/mem2.aspe.

    Google Scholar 

  • New York City Department of Environmental Protection (NYCDEP). 2012. Infoworks: Citywide Recalibration Report. Updates to and Recalibration of October 2007 Landside Models. City of New York, New York.

    Google Scholar 

  • NYCDEP. 2015. Nitrogen Control Program. http://www.nyc.gov/html/dep/html/harborwater/nitrogen.shtml.

    Google Scholar 

  • New York Metropolitan Transportation Council, 2016. New York Best Practice Model (NYBPM). https://www.nymtc.org/Data-and-Modeling/New-York-Best-Practice-Model-NYBPM. Accessed 6/14/16.

  • North, E., Schlag, Z., Hood, R., Li, M., Zhong, L., et al. 2008. Vertical swimming behavior influences the dispersal of simulated oyster larvae in a coupled particle-tracking and hydrodynamic model of Chesapeake Bay. Marine Ecology—Progress Series 359: 99.

    Article  Google Scholar 

  • Orton, P.M., Talke, S.A., Jay, D.A., Yin, L., Blumberg, A.F., et al. 2015a. Channel shallowing as mitigation of coastal flooding. Journal of Marine Science and Engineering 3(3): 654–673. doi:10.3390/jmse3030654.

    Article  Google Scholar 

  • Orton, P., Vinogradov, S., Georgas, N., Blumberg, A., Lin, N., et al. 2015b. New York City Panel on Climate Change 2015 Report, Chapter 4: Dynamic coastal flood modeling, Annals of New York Academy of Sciences 1336(1): 56–66.

    Article  Google Scholar 

  • Pearce, J.M. 2012. Open source research in sustainability. Sustainability: The Journal of Record 5: 238–243. doi:10.1089/SUS.2012.9944.

    Article  Google Scholar 

  • Peyronnin, N., Green, M., Richards, C.P., Owens, A., Reed, D., et al. 2013. Louisiana’s 2012 Coastal Master Plan: Overview of a science-based and publicly informed decisionmaking process. In: Louisiana’s 2012 Coastal Master Plan Technical Analysis, Journal of Coastal Research, Special Issue No. 67: 1–15. Peyronnin, N., and Reed, D. (eds).

    Google Scholar 

  • Pickett, S.T.A., Cadenasso, M.L., and Grove, J.M. 2004. Resilient cities: Meaning, models, and metaphor for integrating the ecological, socio-economic, and planning realms. Landscape and Urban Planning 69: 369–384. doi:10.1016/j.landurbplan.2003.10.035.

    Article  Google Scholar 

  • Reed, M.S. 2008. Stakeholder participation for environmental management: A literature review. Biological Conservation 141: 2417–2431. doi:10.1016/j.biocon.2008.07.014.

    Article  Google Scholar 

  • Rossman, L. 2015. Storm Water Management Model Reference Manual, Volume I—Hydrology. U.S. Environmental Protection Agency, Cincinnati, OH.

    Google Scholar 

  • Salvo, J., et al. 2006. New York City Population Projections by Age/Sex & Borough 2000–2030 (Briefing Booklet). New York City Department of City Planning, New York.

    Google Scholar 

  • Sanderson, E.W. 2009. Mannahatta: A Natural History of New York City. New York: Abrams.

    Google Scholar 

  • Schoemaker, P.J.H. 1995. Scenario planning: A tool for strategic thinking. MIT Sloan Management Review 37: 25–40.

    Google Scholar 

  • Taylor, K.E., Stouffer, R.J., and Meehl, G.A. 2011. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93: 485–498.

    Article  Google Scholar 

  • U.S. Fish & Wildlife Service. 2011. Science behind the Sea Level Affecting Marshes Model (SLAMM). Washington, D.C.: U.S. Fish and Wildlife Service.

    Google Scholar 

  • Vörösmarty, C.J., Willmott, C.J., Choudhury, B.J., Schloss, A.L., Stearn, T.K., et al. 1996. Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling. Water Resources Research 32: 3137–3150.

    Article  Google Scholar 

  • Walker, B., Carpenter, S., Anderies, J., Abel, N., Cumming, G.S., et al. 2002. Conservation ecology: Resilience management in social-ecological systems: A working hypothesis for a participatory approach. Conservation Ecology 6: 14.

    Article  Google Scholar 

  • Westerink, J.J., Luettich, R.A., Jr., and Scheffner, N.R. 1993. ADCIRC: An advanced three-dimensional circulation model for shelves, coasts and estuaries, Report 3: Development of a tidal constituent data base for the Western North Atlantic and Gulf of Mexico, Dredging Research Program Technical Report DRP-92-6, U.S. Army Corps of Engineers, Vicksburg, MS.

    Google Scholar 

  • Wheeler, D.A. 2015. Why Open Source Software/Free Software (OSS/FS, FOSS, or FLOSS)? Look at the Numbers! http://www.dwheeler.com/oss_fs_why.html. Accessed 11/28/15.

    Google Scholar 

  • Wilson, R. 2008. The Finite Volume Coastal Ocean Model (FVCOM) applied to Jamaica Bay. Presented at the State of the Bay Symposium, New York City Department of Environmental Protection, New York, NY.

    Google Scholar 

  • Wilson, R.E., and Flagg, C.N. In prep. Circulation of Jamaica Bay driven by buoyancy and tides simulated using a Finite Volume Coastal Ocean Model. (Prepared for submission to Journal of Geophysical Research).

    Google Scholar 

  • Woelfle, M., Olliaro, P., and Todd, M.H. 2011. Open science is a research accelerator. Nature Chemistry 3: 745–748. doi:10.1038/nchem.1149.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Eric W. Sanderson, William D. Solecki, John R. Waldman, and Adam S. Parris

About this chapter

Cite this chapter

Sanderson, E.W. et al. (2016). Computational Modeling of the Jamaica Bay System. In: Sanderson, E.W., Solecki, W.D., Waldman, J.R., Parris, A.S. (eds) Prospects for Resilience. Island Press, Washington, DC. https://doi.org/10.5822/978-1-61091-734-6_8

Download citation

Publish with us

Policies and ethics