Skip to main content

The Earliest Exposure: Transgenerational Toxicology

  • Chapter
  • 638 Accesses

Abstract

When mammals are exposed to chemicals during fetal development, the outcomes can last a lifetime. In some cases, the catastrophic impacts can be due to chemical malfeasance, as exogenous chemicals masquerade as cellular signals, and alter pattern formation within the fetus. The production of freemartins or the adverse impacts of diethylstilbestrol on the reproductive systems of developing females are classic examples of such impacts upon tissue organization. Other chemicals alter development by altering the heritable material (in other words, the genes and chromosomes), and under these conditions the impacts may extend beyond the mother and her developing offspring, impacting future generations well after the original chemical exposure has subsided. This chapter focuses on the developmental origins of adult disease, and more specifically on multigenerational and transgenerational toxicology.

Children aren’t coloring books. You don’t get to fill them with your favorite colors.

— Khaled Hosseini

This is a preview of subscription content, log in via an institution.

References

  • Anway, M. D., A. S. Cupp, M. Uzumcu, and M. K. Skinner. “Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility.” Science 308 (2005): 1466–69.

    Article  Google Scholar 

  • Anway, M. D., C. Leathers, and M. K. Skinner. “Endocrine Disruptor Vinclozolin-Induced Epigenetic Transgenerational Adult-Onset Disease.” Endocrinology 147 (2006): 5515–23. Epub 2006 Sep 14.

    Article  Google Scholar 

  • Bannister, A. J., and T. Kouzarides. “Regulation of Chromatin by Histone Modifications.” Cell Research 21 (2011): 381–95.

    Article  Google Scholar 

  • Barker, D. K. P., C. Osmond, P. D. Winter, B. Margetts, and S. J. Simmonds. “Weight in Infancy and Death from Ischaemic Heart Disease.” Lancet 334 (9 September 1989): 577–80.

    Article  Google Scholar 

  • Carey, N. “Beyond DNA: Epigenetics.” In The Epigenetic Revolution: How Modern Biology Is Rewriting Our Understanding of Genetics, Disease, and Inheritance. New York: Columbia University Press, 2012. Excerpted in Natural History Online (n.d.). www.naturalhistorymag.com/features/142195/beyond-dna-epigenetics.

  • Esteller, M. “Non-Coding RNAs in Human Disease.” Nature Reviews Genetics 12 (2011): 861–74.

    Article  Google Scholar 

  • Heijmans, B. T., E. W. Tobi, A. D. Stein, H. Putter, G. J. Blauw, E. S. Susser, P. E. Slagboom, and L. H. Lumey. “Persistent Epigenetic Differences Associated with Prenatal Exposure to Famine in Humans.” Proceedings of the National Academy of Sciences USA 105 (2008): 17046–9. doi:10.1073/pnas.0806560105. Epub 2008 Oct 27.

    Article  Google Scholar 

  • Jirtle, R. L., and M. K. Skinner. “Environmental Epigenomics and Disease Susceptibility.” Nature Reviews Genetics 8 (2007): 253–62.

    Article  Google Scholar 

  • Louis, G. M., M. A. Cooney, and C. M. Peterson. “The Ovarian Dysgenesis Syndrome.” Journal of Developmental Origins of Health and Disease 2 (2011): 25–35.

    Article  Google Scholar 

  • Lumey, L. H., M. B. Terry, L. Delgado-Cruzata, Y. Liao, Q. Wang, E. Susser, I. McKeague, and R. M. Santella. “Adult Global DNA Methylation in Relation to Pre-Natal Nutrition.” International Journal of Epidemiology 41 (2012): 116–23. doi:10.1093/ije/dyr137. Epub 2011 Sep 29.

    Article  Google Scholar 

  • Martin, G. M. “Epigenetic Drift in Aging Identical Twins.” Proceedings of the National Academy of Sciences USA 102 (2005): 10413–14.

    Article  Google Scholar 

  • Nilsson, E. E., and M. K. Skinner. “Environmentally Induced Epigenetic Transgenerational Inheritance of Disease Susceptibility.” Translational Research 165 (2015): 12–17.

    Article  Google Scholar 

  • Painter, R. C., T. J. Roseboom, and O. P. Bleker. “Prenatal Exposure to the Dutch Famine and Disease in Later Life: An Overview.” Reproductive Toxicology 20 (2005): 345–52.

    Article  Google Scholar 

  • Poulsen, P., M. Esteller, A. Vaag, and M. F. Fraga. “The Epigenetic Basis of Twin Discordance in Age-Related Diseases.” Pediatric Research 61 (2007): 38R–42R.

    Article  Google Scholar 

  • Prins, G. S. “Estrogen Imprinting: When Your Epigenetic Memories Come Back to Haunt You.” Endocrinology 149 (2008): 5919–21.

    Article  Google Scholar 

  • Reik, W., W. Dean, and J. Walter. “Epigenetic Reprogramming in Mammalian Development.” Science 293 (10 August 2001): 1089–92.

    Google Scholar 

  • Reik, W., and J. Walter. “Genomic Imprinting: Parental Influence on the Genome.” Nature Reviews Genetics 2 (2001): 21–32.

    Article  Google Scholar 

  • Schmidt, C. W. “Uncertain Inheritance Transgenerational Effects of Environmental Exposures.” Environmental Health Perspectives 121 (2013): A298–A303.

    Article  Google Scholar 

  • Uzumcu, M., A. M. Zama, and E. Oruc. “Epigenetic Mechanisms in the Actions of Endocrine-Disrupting Chemicals: Gonadal Effects and Role in Female Reproduction.” Reproduction in Domestic Animals 47 (2012): 338–47. doi:10.1111/j.1439-0531.2012.02096.x.

    Article  Google Scholar 

  • Xin, F., M. Susiarjo, and M. S. Bartolomei. “Multigenerational and Transgenerational Effects of Endocrine Disrupting Chemicals: A Role for Altered Epigenetic Regulation?” Seminars in Cell Developmental Biology 43 (2015): 66–75. doi:10.1016/j.semcdb.2015.05.008 [Epub ahead of print].

    Article  Google Scholar 

  • Zhang, X., and S. M. Ho. “Epigenetics Meets Endocrinology.” Journal of Molecular Endocrinology 46 (2011): R11–R32.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Alan Kolok

About this chapter

Cite this chapter

Kolok, A.S. (2016). The Earliest Exposure: Transgenerational Toxicology. In: Modern Poisons. Island Press, Washington, DC. https://doi.org/10.5822/978-1-61091-609-7_18

Download citation

Publish with us

Policies and ethics