Skip to main content

Climate Change and Freshwater Fauna Extinction Risk

  • Chapter
Book cover Saving a Million Species

Abstract

Fresh waters—rivers, streams, lakes, ponds, wetlands—cover less than 1 percent of the earth’s surface, yet their biodiversity is unrivaled. Fully 10 percent of all known animal species and a third of all vertebrate species, including about 40 percent of the world’s fishes, live in fresh waters. Other well represented groups include insects, crustaceans, mites, and mollusks (table 17-1). Further, an estimated 20,000-200,000 freshwater animal species (mostly invertebrates, including those cryptic species inhabiting ground waters) have yet to be described (Strayer, 2006). Despite this rich diversity, extinction risk of freshwater species has been largely overlooked (Strayer and Dudgeon, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allan JD (2004) Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution and Systematics 35:257–284

    Article  Google Scholar 

  • Allan, J. D., M. A. Palmer, and N. L. Poff. 2005. “Climate change and freshwater ecosystems.” In Climate Change and Biodiversity, edited byT. E. Lovejoy and L. Hannah, 274-290. New Haven, CT: Yale University Press.

    Google Scholar 

  • Angermeier PL (1995) Ecological attributes of extinction-prone species: Loss of freshwater fishes of Virginia. Conservation Biology 9:143–158

    Article  Google Scholar 

  • Angermeier PL, Schlosser IJ (1989) Species-area relationships for stream fishes. Ecology 70:1450–1462

    Article  Google Scholar 

  • Balian, E. V, C. Leveque, H. Segers, and K. Martens, eds. 2008. “Freshwater animal diversity assessment.” Hydrobiologia 595: 1-637.

    Google Scholar 

  • Blanck A, Lamouroux N (2007) Large-scale intraspecific variation in life-history traits of European freshwater fish. Journal of Biogeography 34:862–875

    Article  Google Scholar 

  • Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6:783–796

    Article  Google Scholar 

  • Bonada N, Doledec S, Statzner B (2007) Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: Implications for future climatic scenarios. Global Change Biology 13:1658–1671. doi:10.1111/j.1365-2486.2007.01375.x

    Article  Google Scholar 

  • Botkin DB, Saxe H, Araujo MG, Betts R, Bradshaw RHW, Cedhagen T, Chesson P et al (2007) Forecasting the effects of global warming on biodiversity. BioScience 57:227–236

    Article  Google Scholar 

  • Broennimann O, Treier UA, Muller-Scharer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters 10:701–709

    Article  CAS  Google Scholar 

  • Caissie D (2006) The thermal regime of rivers: A review. Freshwater Biology 51:1389–1406

    Article  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: Biodiversity conservation in a changing climate. Science 332:53–58

    Article  CAS  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, USA 105:6668–6672

    Article  CAS  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Leveque C, Naiman RJ et al (2006) Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological RReview 81:163–182

    Article  Google Scholar 

  • Eaton JG, Scheller RM (1996) Effects of climate warming on fish thermal habitat in streams of the United States. Limnology & Oceanography 41:1109–1115

    Article  Google Scholar 

  • Fagan WF, Unmack PJ, Burgess C, Minckley WL (2002) Rarity, fragmentation, and extinction risk in desert fishes. Ecology 83:3250–3256

    Article  Google Scholar 

  • Finn DL, Theobald DM, Black WC IV, Poff NL (2006) Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Molecular Ecology 15:3553–3566

    Article  CAS  Google Scholar 

  • Finn DS, Blouin M, Lytle DA (2007) Population genetic structure reveals terrestrial affinities for a headwater stream insect. Freshwater Biology 52:1881–1897

    Article  CAS  Google Scholar 

  • Frimpong EA, Angermeier PL (2009) Fishtraits: A database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34:487–495

    Article  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21:394–407

    Article  Google Scholar 

  • Girvetz EH, Zganjar C, Raber GT, Maurer EP, Kareiva P, Lawler JJ (2009) Applied climate-change analysis: The Climate Wizard Tool. PLoS ONE 4(12):e8320. doi:10.1371/journal.pone.0008320

    Article  Google Scholar 

  • Hassall C, Thompson DJ, French GC, Harvey IF (2007) Historical changes in the phenology of British Odonata are related to climate. Global Change Biology 13:933–941

    Article  Google Scholar 

  • Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: Detected patterns, future trends and adaptations in northern regions. Biological Reviews 84:39–54

    Article  Google Scholar 

  • Hering, D., A. Schmidt-Kloiber, J. Murphy, S. Lücke, C. Zamora-Muñoz, M. López-Rodríguez, T. Huber, and W Graf. 2009. “Potential impact of climate change on aquatic insects: A sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences.” Aquatic Sciences—Research Across Boundaries 71: 3-14.

    Google Scholar 

  • Hoegh-Guldberg O, Hughes L, McIntyre S, Lindenmayer DB, Parmesan C, Possingham HP, Thomas CD (2008) Assisted colonization and rapid climate change. Science 321:345–346

    Article  CAS  Google Scholar 

  • Hughes, J. M., D. J. Schmidt, and D. S. Finn. 2009. “Genes in streams: Using DNA to understand the movement of freshwater fauna and their riverine habitat.” BioScience 59: 573-583, doi:10.1525/bio.2009.59.7.8

  • Issartel J, Hervant F, Voituron Y, Renault D, Vernon P (2005) Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comparative Biochemistry and Physiology 141:1–7

    Google Scholar 

  • IPCC. “IPCC Fourth Assessment Report: Climate Change 2007.” Accessed 17 June 2011. Available at http://www.ipcc.ch/publications_and_data/ar4/syr/ en/contents.html

  • IUCN. 2007. “2007IUCN Red List of threatened species.” Accessed 27 January 2009. Available at http://www.iucnredlist.org

  • Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ, Postel SL, Running SW (2001) Water in a changing world. Ecological Applications 11:1027–1045

    Article  Google Scholar 

  • Jeschke, J. M., and D. L. Strayer. 2008. “Usefulness of bioclimatic models for studying climate change and invasive species.” Annals of the New York Academy of Sciences (The Year in Ecology and Conservation Biology) 1134: 124.

    Google Scholar 

  • Lawton JH, May RM (1995) Extinction Rates. Oxford University Press, Oxford, UK

    Google Scholar 

  • Lee DS, Gilbert CR, Hocutt CH, Jenkins RE, McAllister DE, Stauffer JR Jr (1980) Atlas of North American Freshwater Fishes. North Carolina State Museum of Natural History, Raleigh, NC

    Google Scholar 

  • Leprieur F, Beauchard O, Blanchet S, Oberdorff T, Brosse S (2008) Fish invasions in the world’s river systems: When natural processes are blurred by human activities. PLoS Biology 6(2):e28. doi:10.1371/journal.pbio.0060028

    Article  Google Scholar 

  • Lettenmaier, D. P., D. Major, N. L. Poff, and S. Running. 2008. “Water Resources.” 121-150, In The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Synthesis and Assessment Product 4.4. M. Walsh (managing editor), P. Backlund, A. Janetos, and D. Schimel (convening lead authors). U.S. Department of Agriculture, Washington D.C. Accessed 17 June 2011. Available at http:// www.climatescience.gov/Library/sap/sap4-3/final-report/default.htm

  • Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends in Ecology & Evolution 19:94–100

    Article  Google Scholar 

  • Lytle DA, Bogan MT, Finn DS (2008) Evolution of aquatic insect behaviours across a gradient of disturbance predictability. Proceedings of the Royal Society of London B 275:453–462

    Article  Google Scholar 

  • Mackie, G. L. 2007. “Biology of corbiculid and sphaeriid clams of North America.” Ohio Biological Survey Bulletin, New Series 15 (3): ix + 436 pp.

    Google Scholar 

  • Magnuson JJ, Crowder LB, Medvick PA (1979) Temperature as an ecological resource. American Zoologist 18:331–343

    Google Scholar 

  • Mahon R (1984) Divergent structure in fish taxocenes of north temperate streams. Canadian Journal of Fisheries and Aquatic Sciences 41:330–350

    Article  Google Scholar 

  • Malmqvist B, Rundle S (2002) Threats to the running water ecosystems of the world. Environmental Conservation 29:134–153

    Article  Google Scholar 

  • Master, L. L., B. A. Stein, L. S. Kutner, and G. A. Hammerson. 2000. “Vanishing assets: Conservation status of U.S. species.” In Precious Heritage: The Status of Biodiversity in the United States, edited by B. A. Stein, L. S. Kutner, and J. S. Adams, 93-118. New York: Oxford University Press.

    Google Scholar 

  • Matthews WJ, Zimmerman EG (1990) Potential effects of global warming on native fishes of the southern Great Plains and the Southwest. Fisheries 15:26–32

    Article  Google Scholar 

  • McGarvey DJ, Hughes RM (2008) Longitudinal zonation of Pacific Northwest (U.S.A.) fish assemblages and the species-discharge relationship. Copeia 2:311–321

    Article  Google Scholar 

  • McLachlan JS, Hellmann JJ, Schwartz MW (2007) Aframework for debate of assisted migration in an era of climate change. Conservation Biology 21:297–302

    Article  Google Scholar 

  • Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347350. doi:10.1038/nature04312

    Article  Google Scholar 

  • Mohseni O, Stefan HG, Eaton JG (2003) Global warming and potential changes in fish habitat in U.S. streams. Climatic Change 59:389–409

    Article  CAS  Google Scholar 

  • Morgan IJ, McDonald DG, Wood CM (2001) The cost of living for freshwater fish in a warmer, more polluted world. Global Change Biology 7:345–355

    Article  Google Scholar 

  • NatureServe. 2009. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, VA. Accessed 16-17 February 2009. Available at http://www.natureserve.org/explorer

  • Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408

    Article  CAS  Google Scholar 

  • Oberdorff T, Hugueny B, Guegan J-F (1997) Is there an influence of historical events on contemporary fish species richness in rivers? Comparisons between Western Europe and North America. Journal of Biogeography 24:461–467

    Article  Google Scholar 

  • O’Grady JJ, Reed DH, Brook BW, Frankham R (2004) What are the best correlates of predicted extinction risk? Biological Conservation 118:513–520

    Article  Google Scholar 

  • Olden JD, Hogan ZS, Vander Zanden MJ (2007) Small fish, big fish, red fish, blue fish: Size-biased extinction risk of the world’s freshwater and marine fishes. Global Ecology and Biogeography 16:694–701

    Article  Google Scholar 

  • Olden JD, Poff NL, Bestgen K (2008) Trait synergisms and the rarity, extirpation, and extinction risk of endemic fishes in the Colorado River Basin. Ecology 89:847–856

    Article  Google Scholar 

  • Olden, J. D., M. J. Kennard, J. J. Lawler, and N. L. Poff. “Diving into murky waters: Challenges and opportunities for implementing managed relocation to mitigate the threat of climate change to freshwater biodiversity.” Conservation Biology. (forthcoming).

    Google Scholar 

  • Palmer MA, Reidy Liermann CA, Nilsson C, Florke M, Alcamo J, Land PS, Bond N (2008) Climate change and the world’s river basins:Anticipating management options. Frontiers in Ecology and Environment 6:81–89

    Article  Google Scholar 

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends in Ecology & Evolution 23:149–158

    Article  Google Scholar 

  • Poff NL (1996) A hydrogeography of unregulated streams in the United States and an examination of scale-dependence in some hydrological descriptors. Freshwater Biology 36:71–91

    Article  Google Scholar 

  • Poff NL (2009) Managing for variation to sustain freshwater ecosystems. Journal of Water Resources Planning and Management 135:1–4

    Article  Google Scholar 

  • Poff, N. L., and B. D. Richter. “Aquatic ecosystem sustainability in 2050.” In Environment and Water Resources in 2050: A Vision and Path Forward. American Society of Civil Engineers special publication. (forthcoming).

    Google Scholar 

  • Poff NL, Ward JV (1989) Implications of streamflow variability and predictability for lotic community structure: A regional analysis of stream-flow patterns. Canadian Journal of Fisheries and Aquatic Sciences 46:1805–1818

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter B, Sparks R et al (1997) The natural flow regime: A new paradigm for riverine conservation and restoration. BioScience 47:769–784

    Article  Google Scholar 

  • Poff NL, Angermeier PL, Cooper SD, Lake PS, Fausch KD, K. O. Wine-miller, L. A. K. Mertes, et al (2001) Fish diversity in streams and rivers. In: Chapin FS, Sala OE, Huber-Sannwald R (eds) Scenarios of Future Biodiversity. Springer-Verlag, New York, pp 315–349

    Google Scholar 

  • Poff, N. L., M. Brinson, and J. B. Day. 2002. “Freshwater and Coastal Ecosystems and Global Climate Change: A Review of Projected Impacts for the United States.” Arlington, VA: Pew Center on Global Climate Change. Accessed 17 June 2011. Available at http://www.pewclimate.org/global-warming-in-depth/all_reports/aquatic_ecosystems

  • Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: Trait-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25:730–755

    Article  Google Scholar 

  • Poff NL, Olden JD, Merritt D, Pepin D (2007) Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences, USA 104:5732–5737

    Article  CAS  Google Scholar 

  • Pringle CM (2003) What is hydrologic connectivity and why is it ecologically important? Hydrological Processes 17:2685–2689

    Article  Google Scholar 

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22:521–533

    Article  Google Scholar 

  • Rahel FJ, Keleher CJ, Anderson JL (1996) Habitat loss and population fragmentation for coldwater fishes in the Rocky Mountain Region in responseto climate warming. Limnology & Oceanography 41:1116–1123

    Article  Google Scholar 

  • Ricciardi A, Rasmussen JB (1999) Extinction rates of North American freshwater fauna. Conservation Biology 13:220–222

    Article  Google Scholar 

  • Sabo JL, Finlay JC, Kennedy T, Post DM (2010) The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330:965–967

    Article  CAS  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E et al (2000) Biodiversity—global biodiversity scenarios for the year 2010. Science 287:1770–1774

    Article  CAS  Google Scholar 

  • Seager R, Ting MF, Held I, Kushnir Y, Lu J, Vecchi G, Huang HP et al (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  CAS  Google Scholar 

  • Strayer, D. L. 2006. “Challenges for freshwater invertebrate conservation.” Journal of the North American Benthological Society 25: 271-287.

    Google Scholar 

  • Strayer DL (2008) Freshwater Mussel Ecology: AMultifactor Approach to Distribution and Abundance. University of California Press, Berkeley

    Google Scholar 

  • Strayer DL, Dudgeon D (2010) Meeting the challenges of freshwater biodiversity conservation. Journal of the North American Benthological Society 29:344–358

    Google Scholar 

  • Sweeney BW, Jackson JK, Newbold JD, Funk DH (1992) Climate change and the life histories and biogeography of aquatic insects in eastern North America. In: Firth P, Fisher SG (eds) Global Climate Change and Freshwater Ecosystems. Springer-Verlag, New York, pp 143–176

    Google Scholar 

  • Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical animals. Science 320:1296–1297

    Article  CAS  Google Scholar 

  • Townsend CR (1989) The patch dynamics concept of stream community ecology. Journal of the North American Benthological Society 8:36–50

    Article  Google Scholar 

  • Turner BL II, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N et al (2003) A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences, USA 100:8074–8079

    Article  CAS  Google Scholar 

  • USACE (United States Army Corps of Engineers). 2007. National Inventory of Dams, Federal Emergency Management Agency, Washington, D.C. Accessed 17 June 2011. Available at http://nid.usace.army.mil

  • Van der Putten MM, Visser ME (2010) Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences 365:2025–2034

    Article  Google Scholar 

  • Vannote RL, Sweeney BW (1980) Geographic analysis of thermal equilibria: A conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. The American Naturalist 115:667

    Article  Google Scholar 

  • Vorosmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, et al. 2010. “Global threats to human water security and river biodiversity.” Nature 467: 555-561. doi:10.1038/nature09440.

    Google Scholar 

  • Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Annual Review of Entomology 27:97–117

    Article  Google Scholar 

  • Wenger SJ, Isaak DJ, Luce CH, Neville HM, Fausch KD, Dunham JB, Dauwalter DC, Young MK, Elsner MM, Rieman BE, Hamlet AF, Williams JE (2011) Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences, USA 108:14175–14180

    Article  CAS  Google Scholar 

  • Wilcove DS, Master LL (2005) How many endangered species are there in the United States? Frontiers in Ecology and the Environment 3:414–420

    Article  Google Scholar 

  • Winston MR, Taylor CM, Pigg J (1991) Upstream extirpation of four minnow species due to damming of a prairie stream. Transactions of the American Fisheries Society 120:98–105

    Article  Google Scholar 

  • Xenopoulos MA, Lodge DM (2006) Going with the flow: Using species-discharge relationships to forecast losses in fish biodiversity. Ecology 87:1907–1914

    Article  Google Scholar 

  • Xenopolous MA, Lodge DM, Alcamo J, Marker M, Schulze K, Van Vuuren DP (2005) Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology 11:1557–1564

    Article  Google Scholar 

  • Yuan, L. L. 2006. “Estimation and application of macroinvertebrate tolerance values.” U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, D.C. Report EPA/600/P-04/116F.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lee Hannah

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Island Press

About this chapter

Cite this chapter

Poff, N.L., Olden, J.D., Strayer, D.L. (2012). Climate Change and Freshwater Fauna Extinction Risk. In: Hannah, L. (eds) Saving a Million Species. Island Press/Center for Resource Economics. https://doi.org/10.5822/978-1-61091-182-5_17

Download citation

Publish with us

Policies and ethics

Societies and partnerships