Source or Sink? Carbon Dynamics in Eastern Old-Growth Forests and Their Role in Climate Change Mitigation
Abstract
For decades forest scientists have thought that old-growth temperate forests were either carbon neutral or even carbon sources, emitting more greenhouse gases to the atmosphere through respiration and decomposition than they were absorbing through photosynthesis. However, recent research has questioned that assumption, showing that eastern old-growth forests may remain productive and have net positive carbon uptake later into succession and stand development than previously thought. These findings remain contentious and yet have profound implications for our understanding of the role of high-biomass, late successional forests in global carbon budgets. Emerging science strongly supports conservation of old-growth forests and management for old-growth structure as effective strategies in global efforts to reduce carbon dioxide emissions and moderate the intensity of future climate change (Luyssaert et al. 2008; Keith et al. 2009; Burrascano et al. 2013).
References
- Battles J. J., T. J. Fahey, C. T. Driscoll, J. D. Blum, and C. E. Johnson. 2014. “Restoring soil calcium reverses forest decline” Environmental Science and Technology Letters1: 15–19.CrossRefGoogle Scholar
- Bauhus, J., K. Puettmann, and C. Messier. 2009. “Silviculture for old-growth attributes” Forest Ecology and Management258: 525–537.CrossRefGoogle Scholar
- Beckage, B., B. Osborne, D. G. Gavin, C. Pucko, T. Siccama, and T. Perkins. 2008. “A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont” Proceedings of the National Academy of Sciences105: 4197–4202.CrossRefGoogle Scholar
- Bormann, F. H., and G. E. Likens. 1979. Pattern and Process in a Forested Ecosystem. New York: Springer-Verlag.CrossRefGoogle Scholar
- Brown, S., P. Schroeder, and R. Birdsey. 1997. “Aboveground biomass distribution of US eastern hardwood forests and the use of large trees as an indicator of forest development” Forest Ecology and Management96: 37–47.CrossRefGoogle Scholar
- Burrascano, S., W. S. Keeton, F. M. Sabatini, and C. Blasi. 2013. “Commonality and variability in the structural attributes of moist temperate old-growth forests: A global review” Forest Ecology and Management291: 458–479.CrossRefGoogle Scholar
- Carey, E. V., A. Sala, R. Keane, and R. M. Callaway. 2001. “Are old forests underestimated as global carbon sinks?” Global Change Biology 7: 339–344.CrossRefGoogle Scholar
- Case, B. S., H. L. Buckley, A. Barker-Plotkin, D. A. Orwig, A. M. Ellison. 2017. “When a foundation crumbles: forecasting forest dynamics following the decline of the foundation species Tsuga canadensis.” Ecosphere 8: e01893.CrossRefGoogle Scholar
- Chen, J., J. Xu, R. Jensen, and J. Kabrick. 2015. “Changes in aboveground biomass following alternative harvesting in oak-hickory forests in the Eastern USA” iForest - Biogeosciences and Forestry8: 622–630.CrossRefGoogle Scholar
- Cleavitt, N. L., J. J. Battles, C. E. Johnson, and T. J. Fahey. 2018. “Long-term decline of sugar maple following forest harvest, Hubbard Brook Experimental Forest, New Hampshire” Canadian Journal of Forest Research48: 23–31.CrossRefGoogle Scholar
- Curzon, M. T., and W. S. Keeton. 2010. “Spatial characteristics of canopy disturbances in riparian old-growth hemlock-northern hardwood forests, Adirondack Mountains, New York, USA” Canadian Journal of Forest Research40: 13–25.CrossRefGoogle Scholar
- D’Amato, A. W., and D. A. Orwig. 2008. “Stand and landscape-level disturbance dynamics in old-growth forests in western Massachusetts” Ecological Monographs78: 507–522.CrossRefGoogle Scholar
- D’Amato, A. W., D. A. Orwig, D. R. Foster, A. Barker Plotkin, P. K. Schoonmaker, and M. R. Wagner. 2017. “Long-term structural and biomass dynamics of virgin Tsuga canadensis–Pinus strobus forests after hurricane disturbance” Ecology98: 721–733.CrossRefGoogle Scholar
- Davis, M. B. 1996. “Extent and location.” In Eastern Old-Growth Forests: Prospects for Rediscovery and Recovery, edited by M. B. Davis., 18–34. Washington, DC: Island Press.Google Scholar
- Davis, S. C., A. E. Hessl, C. J. Scott, M. B. Adams, R. B. Thomas. 2009. “Forest carbon sequestration changes in response to timber harvest” Forest Ecology and Management258: 2101–2109.CrossRefGoogle Scholar
- Després, T., H. Asselin, F. Doyon, and Y. Bergeron. 2014. “Structural and spatial characteristics of old-growth temperate deciduous forests at their northern distribution limit” Forest Science60: 871–880.CrossRefGoogle Scholar
- Ducey, M. J., J. S. Gunn, and A. A. Whitman. 2013. “Late-successional and old-growth forests in the Northeastern United States: structure, dynamics, and prospects for restoration” Forests4: 1055–1086.CrossRefGoogle Scholar
- Duveneck, M. J., R. M. Scheller, and M. A. White. 2014. “Effects of alternative forest management on biomass and species diversity in the face of climate change in the northern Great Lakes region (USA)” Canadian Journal of Forest Research44: 700–710.CrossRefGoogle Scholar
- Eriksson, E., A. R. Gillespie, L. Gustavsson, O. Langvall, M. Olsson, R. Sathre, and J. Stendahl. 2007. “Integrated carbon analysis of forest management practices and wood substitution” Canadian Journal of Forest Research37: 671–681.CrossRefGoogle Scholar
- Eisen, K., and A. B. Plotkin. 2015. “Forty years of forest measurements support steadily increasing aboveground biomass in a maturing, Quercus-dominant northeastern forest” Journal of the Torrey Botanical Society142: 97–112.CrossRefGoogle Scholar
- Ellison, A. M., M. S. Bank, B. D. Clinton, E. A. Colburn, K. Elliott, C. R. Ford. D. R. Foster, et al. 2005. “Loss of foundation species: consequences for the structure and dynamics of forested ecosystems” Frontiers in Ecology and Environment3: 479–486.CrossRefGoogle Scholar
- Fahey, R. T., B. C. Alvesherea, J. I. Burton, A. W. D’Amato, Y. L. Dickinson, W. S. Keeton, C. C. Kerne, et al. 2018. “Shifting conceptions of complexity in forest management and silviculture.” Forest Ecology and Management. In Press.CrossRefGoogle Scholar
- Fahey, R. T., A. T. Fotis, and K. D. Woods. 2015. “Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests” Ecological Applications25: 834–847.PubMedCrossRefPubMedCentralGoogle Scholar
- Fahey, T. J., T. G. Siccama, C. T. Driscoll, G. E. Likens, J. Campbell, C. E. Johnson, J. J. Battles, et al. 2005. “The biogeochemistry of carbon at Hubbard Brook” Biogeochemistry75: 109–176.CrossRefGoogle Scholar
- Fahey, T. J., P. B. Woodbury, J. J. Battles, C. L. Goodale, S. P. Hamburg, S. V. Ollinger, and C. W. Woodall. 2010. “Forest carbon storage: ecology, management, and policy” Frontiers in Ecology and Environment8: 245–252.CrossRefGoogle Scholar
- Fassnacht, K. S., D. R. Bronson, B. J. Palik, A. W. D’Amato, C. G. Lorimer, and K. J. Martin. 2015. “Accelerating the development of old-growth characteristics in second-growth northern hardwoods.” General Techical Report NRS-144. North Central Research Station. Newtown Square, PA: USDA Forest Service.CrossRefGoogle Scholar
- Fisk, M. C., D. R. Zak, and T. R. Crow. 2002. “Nitrogen storage and cycling in old- and second-growth northern hardwood forests” Ecology83: 73–87.CrossRefGoogle Scholar
- Ford, S. E., and W. S. Keeton. 2017. “Enhanced carbon storage through management for old-growth characteristics in northern hardwoods” Ecosphere8: 1–20.CrossRefGoogle Scholar
- Forrester, J. A., D. J. Mladenoff, A. W. D’Amato, S. Fraver, D. L. Lindner, N. J. Brazee, M. K. Clayton, and S. T. Gower. 2015. “Temporal trends and sources of variation in carbon flux from coarse woody debris in experimental forest canopy openings” Oecologia179: 889–900.PubMedCrossRefPubMedCentralGoogle Scholar
- Forrester, J. A., D. J. Mladenoff, and S. T. Gower. 2013. “Experimental manipulation of forest structure: near term effects on gap and stand scale C dynamics” Ecosystems16: 1455–1472.CrossRefGoogle Scholar
- Foster, J. R., J. I. Burton, J. A. Forrester, F. Liu, J. D. Muss, F. M. Sabatini, R. M. Scheller, and D. J. Mladenoff. 2010. “Evidence for a recent increase in forest growth is questionable” Proceedings of the National Academy of Sciences107: E86–E87.CrossRefGoogle Scholar
- Fraver, S., A. S. White, and R. S. Seymour. 2009. “Natural disturbance in an old-growth landscape of northern Maine, USA” Journal of Ecology97: 289–298.CrossRefGoogle Scholar
- Gardiner, B., P. Berry, and B. Moulia. 2016. “Review: Wind impacts on plant growth, mechanics and damage” Plant Science245: 94–118.PubMedCrossRefPubMedCentralGoogle Scholar
- Gough, C. M., P. S. Curtis, B. S. Hardiman, C. M. Scheuermann, and B. Bond-Lamberty. 2016. “Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests.” Ecosphere 7: e01375. doi:10.1002/ecs2.1375.CrossRefGoogle Scholar
- Gough C. M., C. S. Vogel, C. Kazanski, L. Nagel, C. E. Flower, and P. S. Curtis. 2007. “Coarse woody debris and the carbon balance of a north temperate forest” Forest Ecology and Management244: 60–67.CrossRefGoogle Scholar
- Gottesman, A. J., and W. S. Keeton. 2017. “Regeneration responses to management for old-growth characteristics in northern hardwood-conifer forests” Forests8: 1–21.CrossRefGoogle Scholar
- Gower, S. T., R. E. McMurtrie, and D. Murty. 1996. “Aboveground net primary production decline with stand age: potential causes” Trends in Ecology and Evolution11: 378–382.CrossRefGoogle Scholar
- Gronewold, C. A., A. W. D’Amato, and B. J. Palik. 2010. “The influence of cutting cycle and stocking level on the structure and composition of managed old-growth northern hardwoods” Forest Ecology and Management259: 1151–1160.CrossRefGoogle Scholar
- Gunn, J. S., M. J. Ducey, and A. A. Whitman. 2014. “Late-successional and old-growth forest carbon temporal dynamics in the Northern Forest (Northeastern USA)” Forest Ecology and Management312: 40–46.CrossRefGoogle Scholar
- Gustafsson, L., S. C. Baker, J. Bauhus, W. J. Beese, A. Brodie, J. Kouki, D. B. Lindenmayer, et al. 2012. “Retention forestry to maintain multifunctional forests: A world perspective” BioScience62: 633–645.CrossRefGoogle Scholar
- Hadley, J. L., and J. L. Schedlbauer. 2002. “Carbon exchange of an old-growth eastern hemlock (Tsuga canadensis) forest in central New England.” Tree Physiology 22: 1079-1092.PubMedCrossRefPubMedCentralGoogle Scholar
- Halpin, R. C., and C. Lorimer. 2016. “Long-term trends in biomass and tree demography in northern hardwoods: An integrated field and simulation study” Ecological Monographs86: 78–93.Google Scholar
- Hanson, J. J., and C. G. Lorimer. 2007. “Forest structure and light regimes following moderate wind storms: implications for multi-cohort management” Ecological Applications17: 1325–1340.PubMedCrossRefPubMedCentralGoogle Scholar
- Harmon, M. E. 2001. “Carbon sequestration in forests: addressing the scale question” Journal of Forestry99: 24–29.Google Scholar
- Harmon, M. E., W. K. Ferrell, and J. F. Franklin. 1990. “Effects on carbon storage of conversion of old-growth forests to young forests” Science247: 699–702.PubMedCrossRefPubMedCentralGoogle Scholar
- Harmon, M. E., and B. Marks. 2002. “Effects of silvicultural practices on carbon stores in Douglas-fir-western hemlock forests in the Pacific Northwest, USA: results from a simulation model” Canadian Journal of Forest Research32: 863–877.CrossRefGoogle Scholar
- Hoover, C. M., and L. S. Heath. 2011. “Potential gains in C storage on productive forestlands in the Northeastern United States through stocking management” Ecological Applications21: 1154–1161.PubMedCrossRefPubMedCentralGoogle Scholar
- Hoover, C. M., W. B. Leak, and B. G. Keel. 2012. “Benchmark carbon stocks from old-growth forests in northern New England, USA” Forest Ecology and Management266: 108–114.CrossRefGoogle Scholar
- Iverson, L., A. Prasad, and S. Matthews. 2008. “Modeling potential climate change impacts on the trees of the northeastern United States” Mitigation and Adaptation Strategies for Global Change13: 487–516.CrossRefGoogle Scholar
- Janowiak, M. K.; A. W. D’Amato, C. W. Swanston, L. Iverson, F. R. Thompson III, W. D. Dijak, S. Matthews, et al. 2018. “New England and northern New York forest ecosystem vulnerability assessment and synthesis: a report from the New England Climate Change Response Framework project.” General Techical Report NRS-173. Northern Research Station. Newtown Square, PA: USDA Forest Service.Google Scholar
- Keeton, W. S. 2006. “Managing for late-successional/old-growth characteristics in northern hardwood-conifer forests” Forest Ecology and Management235: 129–142.CrossRefGoogle Scholar
- Keeton, W. S., and J. F. Franklin. 2005. “Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests?” Ecological Monographs 75: 103–118.CrossRefGoogle Scholar
- Keeton, W. S., C. E. Kraft, and D. R. Warren. 2007. “Mature and old-growth riparian forests: Structure, dynamics, and effects on Adirondack stream habitats” Ecological Applications17: 852–868.CrossRefGoogle Scholar
- Keeton, W. S., A. A. Whitman, G. C. McGee, and C. L. Goodale. 2011. “Late-successional biomass development in northern hardwood-conifer forests of the Northeastern United States” Forest Science57: 489–505.Google Scholar
- Keith, H., B. G. Mackey, and D. B. Lindenmayer. 2009. “Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests” Proceedings of the National Academy of Sciences106: 11635–11640.CrossRefGoogle Scholar
- Kerchner, C. D., and W. S. Keeton. 2015. “California’s regulatory forest carbon market: Viability for northeast landowners” Forest Policy and Economics50: 70–81.CrossRefGoogle Scholar
- Kern, C. C., J. Burton, P. Raymond, A. D’Amato, W. S. Keeton, A. A. Royo, M. B. Walters, C. R. Webster, and J. L. Willis. 2016. “Challenges facing gap-based silviculture and possible solutions for mesic northern forests in North America” Forestry90: 4–17.CrossRefGoogle Scholar
- Lindenmayer, D. B., and J. F. Franklin. 2002. Conserving Forest Biodiversity: A Comprehensive Multiscaled Approach. Washington, DC: Island Press.Google Scholar
- Lovett, G. M., J. J. Cole, and M. L. Pace. 2006. “Is net ecosystem production equal to ecosystem carbon accumulation?” Ecosystems 9: 1–4.CrossRefGoogle Scholar
- Luyssaert, S., E-D. Schulze, A. Borner, A. Knohl, D. Hessenmoller, B. E. Law, P. Ciais, and J. Grace. 2008. “Old-growth forests as global carbon sinks.” Nature 455: 213–215.PubMedCrossRefPubMedCentralGoogle Scholar
- Malmsheimer, R. W., P. Heffernan, S. Brink, D. Crandall, F. Deneke, C. Galik, E. Gee, et al. 2008. “Forest management solutions for mitigating climate change in the United States” Journal of Forestry106: 115–171.Google Scholar
- McGarvey, J. C., J. R. Thompson, H. E. Epstein, and H. H. Shugart. 2015. “Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding of the eastern forest carbon sink” Ecology96: 311–317.PubMedCrossRefPubMedCentralGoogle Scholar
- McKinley, D. C., M. G. Ryan, R. A. Birdsey, C. P. Giardina, M. E. Harmon, L. S. Heath, R. A. Houghton, et al. 2011. “A synthesis of current knowledge on forests and carbon storage in the United States” Ecological Applications21: 1902–1924.PubMedCrossRefPubMedCentralGoogle Scholar
- McMahon, S. M., G. G. Parker, and D. R. Miller. 2010. “Evidence for a recent increase in forest growth” Proceedings of the National Academy of Sciences107: 3611–3615.CrossRefGoogle Scholar
- Meigs, G. W., and W. S. Keeton. 2018. “Intermediate-severity wind disturbance in mature temperate forests: effects on legacy structure, carbon storage, and stand dynamics. Ecological Applications. In Press.Google Scholar
- Nunery, J., and W. S. Keeton. 2010. “Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products” Forest Ecology and Management259: 1363–1375.CrossRefGoogle Scholar
- Odum, E. P. 1969. “The strategy of ecosystem development” Science164: 262–270.PubMedCrossRefPubMedCentralGoogle Scholar
- Ollinger, S. V., J. D. Aber, P. B. Reich, and R. J. Freuder. 2002. “Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2, and land use history on the carbon dynamics of northern hardwood forests” Global Change Biology8: 545–562.CrossRefGoogle Scholar
- Ollinger, S. V., C. L. Goodale, K. Hayhoe, and J. P. Jenkins. 2008. “Potential effects of climate change and rising CO2 on ecosystem processes in northeastern U.S. forests” Mitigation and Adaptation Strategies for Global Change13: 467–485.CrossRefGoogle Scholar
- Pan, Y., R. Birdsey, J. Hom, and K. McCullough. 2009. “Separating effects of changes in atmospheric composition, climate and land-use on carbon sequestration of U.S. Mid-Atlantic temperate forests” Forest Ecology and Management259: 151–164.CrossRefGoogle Scholar
- Peckham, S. D., S. T Gower, and J. Buongiorno. 2012. “Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S.” Carbon Balance and Mangaement 7: 6.CrossRefGoogle Scholar
- Phillips, N. G., T. N. Buckley, and D. T. Tissue. 2008. “Capacity of old trees to respond to environmental Change” Journal of Integrative Plant Biology50: 1355–1364.PubMedCrossRefPubMedCentralGoogle Scholar
- Ray, D. G., R. S. Seymour, N. S. Scott, and W. S. Keeton. 2009. “Mitigating climate change with managed forests: balancing expectations, opportunity, and risk.” Journal of Forestry, January/February: 50–51.Google Scholar
- Rhemtulla, J. M., D. J. Mladenoff, and M. K. Clayton. 2007. “Regional land-cover conversion in the US upper Midwest: magnitude of change and limited recovery (1850–1935–1993)” Landscape Ecology22: 57–75.CrossRefGoogle Scholar
- Rhemtullaa, J. M., D. J. Mladenoff, and M. K. Clayton. 2009. “Historical forest baselines reveal potential for continued carbon sequestration” Proceedings of the National Academy of Sciences106: 6082–6087.CrossRefGoogle Scholar
- Runkle, J. R. 1982. “Patterns of disturbance in some old-growth mesic forests of eastern North America” Ecology62: 1041–1051.CrossRefGoogle Scholar
- Schulte, L. A., and D. J. Mladenoff. 2005. “Severe wind and fire regimes in northern forests: historical variability at the regional scale” Ecology86: 431–445.CrossRefGoogle Scholar
- Schwenk, W. S., T. M. Donovan, W. S. Keeton, and J. S. Nunery. 2012. “Carbon storage, timber production, and biodiversity: comparing ecosystem services with multi-criteria decision analysis” Ecological Society of America22: 1612–1627.Google Scholar
- Seidl, R., W. Rammer, P. Lasch, F. W. Badeck, and M. J. Lexer. 2008. “Does conversion of even-aged, secondary coniferous forests affect carbon sequestration? A simulation study under changing environmental conditions” Silva Fennica42: 369–386.CrossRefGoogle Scholar
- Seidl, R., M. J. Schelhaas, W. Rammer, and P. J. Verkerk. 2014. “Increasing forest disturbances in Europe and their impact on carbon storage” Nature Climate Change4: 806–810.PubMedPubMedCentralCrossRefGoogle Scholar
- Silver, E. J., A. W. D’Amato, S. Fraver, B. J. Palik, and J. B. Bradford. 2013. “Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA” Forest Ecology and Management291: 110–118.CrossRefGoogle Scholar
- Stephenson, N. L., A. J. Das, R. Condit, S. E. Russo, P. J. Baker, N. G. Beckman, D. A. Coomes, et al. 2014. “Rate of tree carbon accumulation increases continuously with tree size” Nature507: 90–93.PubMedCrossRefPubMedCentralGoogle Scholar
- Thom, D., W. Rammer, and R. Seidl. 2017. “Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions” Global Change Biology23: 269–282.PubMedCrossRefPubMedCentralGoogle Scholar
- Thom, D. and R. Seidl. 2016. “Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests” Biological Reviews91: 760–781.PubMedCrossRefPubMedCentralGoogle Scholar
- Urbano, A. R., and W. S. Keeton. 2017. “Forest structural development, carbon dynamics, and co-varying habitat characteristics as influenced by land-use history and reforestation approach” Forest Ecology and Management392: 21–35.CrossRefGoogle Scholar
- Whittaker, R. H., F. H. Bormann, G. E. Likens, and T. G. Siccama. 1974. “The Hubbard Brook ecosystem study: forest biomass and production” Ecological Monographs44: 233–252.CrossRefGoogle Scholar
- Woodall, C. W., B. F. Walters, S. N. Oswalt, G. M. Domke, C. Toney, and A. N. Gray. 2013. “Biomass and carbon attributes of downed woody materials in forests of the United States” Forest Ecology and Management305: 48–59.CrossRefGoogle Scholar
- Woods, K. D. 2004. “Intermediate disturbance in a late-successional hemlock-northern hardwood forest” Journal of Ecology92: 464–476.CrossRefGoogle Scholar
- Ziegler, S. S. 2002. “Disturbance regimes of hemlock-dominated old-growth forests in northern New York, U.S.A” Canadian Journal of Forest Research32: 2106–2115.CrossRefGoogle Scholar