Advertisement

Agriculture

Impacts, Adaptation, and Mitigation
  • Sanford D. Eigenbrode
  • Susan M. Capalbo
  • Laurie L. Houston
  • Jodi Johnson-Maynard
  • Chad Kruger
  • Beau Olen
Part of the NCA Regional Input Reports book series (NCARIR)

Abstract

Agriculture is critical to the environment, economy, and cultural identity of the Northwest (NW) region. Approximately 24% of the land area of Washington, Oregon, and Idaho is devoted to agricultural crops or rangeland and pastureland (US Department of Agriculture [USDA] Census of Agriculture 2010). Agricultural commodities not only contribute directly to the GDP of the Northwest, but also support food system economies of the region and provide the economic and cultural foundation for rural populations. The principal crops are wheat, potatoes, tree fruit, sugarbeets, legumes, and forage crops, but approximately 300 minor crops are also grown (USDA National Agricultural Statistics Service [NASS] 2012b). The region has significant rangeland and confined animal operations for beef and dairy (USDA Census of Agriculture 2010). These agricultural industries will be affected by projected warming and changes in the amount and seasonal distribution of precipitation in the Northwest (see Chapter 2).

Keywords

Emission Scenario Wine Grape Pinot Noir Zebra Chip Agricultural Research Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The Agriculture chapter authors wish to acknowledge the following grants for support while working on their chapter: National Institute for Food and Agriculture competitive grant, award number: 2011-68002-30191; and US Department of Energy Earth System Modeling (ESM) Program, award number: 20116700330346. The authors also thank Dave Huggins (USDA Agricultural Research Service), Stacy Vynne (Puget Sound Partnership), and two anonymous reviewers for their thoughtful review and comments on an earlier version of this chapter.

References

  1. Abatzoglou, J. T., and C. A. Kolden. 2011. “Climate Change in Western US Deserts: Potential for Increased Wildfire and Invasive Annual Grasses.” Rangeland Ecology & Management 64 (5): 471–478. doi:  10.2111/REM-D-09-00151.1.Google Scholar
  2. Adams, R., J. Wu, and L. L. Houston. 2001. “Changes in Crop Yields and Irrigation Demand.” In The Impact of Climate Change on Regional Systems: A Comprehensive Analysis of California, edited by J. B. Smith and R. Mendelsohn. Cheltenham: Edward Elgar.Google Scholar
  3. Alva, A. K., T. Hodges, R. A. Boydston, and H. P. Collins. 2002. “Effects of Irrigation and Tillage Practices on Yield of Potato under High Production Conditions in the Pacific Northwest.” Communications in Soil Science and Plant Analysis 33:1451–1460. doi:  10.1081/CSS-120004293.Google Scholar
  4. Antle, J. M., and S. M. Capalbo. 2010. “Adaptation of Agricultural and Food Systems to Climate Change: An Economic and Perspective.” Applied Economics Perspectives and Policy 32 (3): 386–416. doi:  10.1093/aepp/ppq015.Google Scholar
  5. Ball, D. A., S. M. Frost, and A. I. Gitelman. 2004. “Predicting Timing of Downy Brome (Bromus tectorum) Seed Production Using Growing Degree Days.” Weed Science 52 (4): 518–524. doi:  10.1614/WS-03-067.Google Scholar
  6. Bauman, Y., G. Mauger, and E. P. Salathé. “Climate Change Impacts on Dairy Production in the Pacific Northwest.” Submitted to Weather Climate and Society. In review.Google Scholar
  7. Branson, D. H. 2008. “Influence of a Large Late Summer Precipitation Event on Food Limitation and Grasshopper Population Dynamics in a Northern Great Plains Grassland.” Environmental Entomology 37 (3): 686–695. http://esa.publisher.ingentaconnect.com/content/esa/envent/2008/00000037/00000003/art00010.Google Scholar
  8. Branson, D. H., A. Joern, and G. A. Sword. 2006. “Sustainable Management of Insect Herbivores in Grassland Ecosystems: New Perspectives in Grasshopper Control.” Bioscience 56 (9): 743–755. doi:  10.1641/0006-3568(2006)56[743:SMOIHI]2.O.CO;2.Google Scholar
  9. Brown, J., and N. MacLeod. 2011. “A Site-Based Approach to Delivering Rangeland Ecosystem Services.” Rangeland Journal 33 (2): 99–108. doi:  10.1071/RJ11006.Google Scholar
  10. Brown, T. T., and D. R. Huggins. 2012. “Soil Carbon Sequestration in the Dryland Cropping Region of the Pacific Northwest.” Journal of Soil and Water Conservation 67 (5): 406–415. doi:  1.2489/jswc.67.5.406.Google Scholar
  11. Clement, S. L., D. S. Husebye, and S. D. Eigenbrode. 2010. “Ecological Factors Influencing Pea Aphid Outbreaks in the US Pacific Northwest.” In Aphid Biodiversity under Environmental Change: Patterns and Processes, edited by P. Kindlemann, A. F. G. Dixon, and J. P. Michaud, 108–128. Dordrecht: Springer.Google Scholar
  12. Climate Leadership Initiative. 2009a. “An Overview of Potential Economic Costs to Oregon of a Business-As-Usual Approach to Climate Change.” http://www.theresourceinnovationgroup.org/storage/economicreport_oregon.pdf.Google Scholar
  13. Climate Leadership Initiative. 2009b. “An Overview of Potential Economic Costs to Washington of a Business-As-Usual Approach to Climate Change.” http://www.theresourceinnovationgroup.org/storage/economicreport_washington.pdf.Google Scholar
  14. Coakley, S. M., G. V. Jones, S. Page, and K. D. Dello. 2010. “Climate Change and Agriculture in Oregon.” In Oregon Climate Assessment Report, edited by K. D. Dello, and P. W. Mote, 151–172. Oregon Climate Change Research Institute, Oregon State University, Corvallis, Oregon, http://occri.net/ocar.Google Scholar
  15. Coakley, S. M., H. Scherm, and S. Chakraborty. 1999. “Climate Change and Plant Disease Management.” Annual Review of Phytopathology 37: 399–426. doi:  10.1146/annurev.phyto.37.1.399.Google Scholar
  16. Cogger, C. G., T. A. Forge, and G. H. Neilsen. 2006. “Biosolids Recycling: Nitrogen Management and Soil Ecology.” Canadian Journal of Soil Science 86 (4): 613–620. doi:  10.4141/S05-117.Google Scholar
  17. Collins, H. P., A. Alva, R. A. Boydston, R. L. Cochran, P. B. Hamm, A. McGuire, and E. Riga. 2006. “Soil Microbial, Fungal and Nematode Responses to Soil Fumigation and Cover Crops under Potato Production.” Biological Fertility and Soils 42 (3): 247–257. doi:  10.1007/s00374-005-0022-0.Google Scholar
  18. Cone, J., J. Borberg, and M. Russo. 2011. “Classical and Jazz: Two Approaches to Supporting Rural Community Preparation for Climate Change.” Rural Connections, June, http://wrdc.usu.edu/files/uploads/Rural%20Connections/RCJUN11w.pdf.Google Scholar
  19. Crowder, D. W., T. D. Northfield, M. R. Strand, and W. E. Snyder. 2010. “Organic Agriculture Promotes Evenness and Natural Pest Control.” Nature 466 (7302): 109–112. doi:  10.1038/nature09183.Google Scholar
  20. Daily, G. C., ed. 1997. Nature’s Services. Washington, DC: Island Press.Google Scholar
  21. Davis, T. S., J. Abatzoglou, W. Price, N. Bosque-Pérez, S. E. Halbert, S. D. Eigenbrode. “Biogeography and Climate Drivers Of Cereal Aphid Phenology In The Northwestern USA.” MS in preparationGoogle Scholar
  22. Diamond, A., and R. Soto. 2009. “Facts on Direct-to-Consumer Food Marketing: Incorporating Data from the 2007 Census of Agriculture.” USDA Agricultural Marketing Service, http://naldc.nal.usda.gov/catalog/46726.Google Scholar
  23. Diekötter, T., R. Billeter, and T. O. Crist. 2008. “Effects of Landscape Connectivity on the Spatial Distribution of Insect Diversity in Agricultural Mosaic Landscapes.” Basic and Applied Ecology 9: 298–307. doi:  10.1016/j.baae.2007.03.003.Google Scholar
  24. Diffenbaugh, N. S., M. A. White, G. V. Jones, and M. Ashfaq. 2011. “Climate Adaptation Wedges: A Case Study of Premium Wine in the Western United States.” Environmental Research Letters 6 (2): 024024. doi:  10.1088/1748-9326/6/2/024024 Google Scholar
  25. Douglas, C. L., R. W. Rickman, B. L. Klepper, J. F. Zuzel, and D. J. Wysocki. 1992. “Agroclimatic Zones for Dryland Winter Wheat Producing Areas of Idaho, Washington, and Oregon.” Northwest Science 66 (1): 26–34. http://hdl.handle.net/2376/1603.Google Scholar
  26. Dukes, J. S., N. R. Chiariello, S. R. Loarie, and C. B. Field. 2011. “Strong Response of an Invasive Plant Species (Centaurea solstitialis L.) to Global Environmental Changes.” Ecological Applications 21 (6): 1887–1894. doi:  10.1890/11-0111.1.Google Scholar
  27. du Toit, L. and A. V. Alcala. 2009. “Management of Seedling Blights in Organic Vegetable Production in the Pacific Northwest.” Progress Report: Organic Cropping Research For The Northwest. CSANR, Washington State University: http://www.tfrec.wsu.edu/pdfs/P2271.pdf.Google Scholar
  28. Easterling, W.E., P. K. Aggarwal, P. Batima, K. M. Brander, L. Erda, S. M. Howden, A. Kirilenko, J. Morton, J.-F. Soussana, J. Schmidhuber and F. N. Tubiello. 2007. “Food, Fibre and Forest Products”. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson, 273–313. Cambridge University Press, Cambridge, UK.Google Scholar
  29. Eigenbrode, S. D., and J. T. Abatzoglou. “Cereal Leaf Beetle in Projected Climates of the PNW.” In preparation.Google Scholar
  30. Elsner, M. M., L. Cuo, N. Voisin, J. S. Deems, A. F. Hamlet, J. A. Vano, K. E. B. Mickelson, S. Y. Lee, and D. P. Lettenmaier. 2010. “Implications of 21st Century Climate Change for the Hydrology of Washington State.” Climatic Change 102: 225–260. doi:  10.1007/s10584-010-9855-0.Google Scholar
  31. Evans, E. W., N. R. Carlile, M. B. Innes, and N. Pitigala. 2012. “Warm Springs Reduce Parasitism of the Cereal Leaf Beetle Through Phenological Mismatch.” Journal of Applied Entomology. doi:  10.1111/jen.l2028. In press.
  32. Farina, A. 2000. Landscape Ecology in Action. Dordrecht: Kluwer Academic Publishers.Google Scholar
  33. Ferris, R., R. H. Ellis, T. R. Wheeler, and P. Hadley. 1998. “Effect of High Temperature Stress at Anthesis on Grain Yield and Biomass of Field-Grown Crops of Wheat.” Annals of Botany 82 (5): 631–639. doi:  10.1006/anbo.l998.0740.Google Scholar
  34. Fielding, D. J. 2008. “Diapause Traits of Melanoplus sanguinipes and Melanoplus borealis (Orthoptera: Acrididae).” Annals of the Entomological Society of America 101: 439–448. doi:  10.1603/0013-8746(2008)101[439:DTOMSA]2.0.CO;2.Google Scholar
  35. Fielding, D. J., and L. S. Defoliart. 2010. “Embryonic Developmental Rates of Northern Grasshoppers (Orthoptera: Acrididae): Implications for Climate Change and Habitat Management.” Environmental Entomology 39:1643–1651. doi:  10.1603/EN09356.Google Scholar
  36. Fischer, G., M. Shah, and H. van Velthuizen. 2002. “Impacts of Climate on Agro-Ecology.” In Climate Change and Agricultural Vulnerability, 38–91. Vienna, Austria: IIASA.Google Scholar
  37. Follett, R. F., and D. A. Reed. 2010. “Soil Carbon Sequestration in Grazing Lands: Societal Benefits and Policy Implications.” Rangeland Ecology and Management 63 (1): 4–15. doi:  10.2111/08-225.1.Google Scholar
  38. Frank, K. L. 2001. “Potential Effects of Climate Change on Warm Season Voluntary Feed Intake and Associated Production of Confined Livestock in the United States.” MS thesis, Kansas State University, Manhattan.Google Scholar
  39. Fynn, R. W. S. 2012. “Functional Resource Heterogeneity Increases Livestock and Rangeland Productivity.” Rangeland Ecology & Management 65 (4): 319–329. doi:  10.2111/REM-D-11-00141.1.Google Scholar
  40. Greer, D. H., W. A. Laing, and B. D. Campbell. 1995. “Photosynthetic Responses of 13 Pasture Species to Elevated CO2 and Temperature.” Australian Journal of Plant Physiology 22 (5): 713–722. doi:  10.1071/PP9950713.Google Scholar
  41. Gu, L., P. Hanson, W. MacPost, D. P. Kaiser, B. Yang, R. Nemani, S. Pallardy, and T. Meyers. 2008. “The 2007 Eastern US Spring Freeze: Increased Cold Damage in a Warming World?” Bioscience 58 (3): 253–262. doi:  10.1641/B580311.Google Scholar
  42. Halbert, S. E., and K. S. Pike. 1985. “Spread of Barley Yellow Dwarf Virus and Relative Importance of Local Aphid Vectors in Central Washington.” Annals of Applied Biology 107 (3): 387–395. doi:  10.1111/j.l744-7348.1985.tb03155.x.Google Scholar
  43. Haramoto, E. R., and E. R. Gallandt. 2004. “Brassica Cover Cropping for Weed Management: a Review.” Renewable Agriculture and Food Systems 19 (4):187–198. doi:  10.1079/RAFS200490.Google Scholar
  44. Hatfield, J., K. J. Boote, P. Fay, L. Hahn, C. Izaurralde, B. A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, and D. Wolfe. 2008. “Agriculture.” In The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States, edited by M. Walsh, 21–74. US Climate Change Science Program Synthesis and Assessment Product 4.3, US Department of Agriculture, Washington, DC.Google Scholar
  45. Hatfield, J. L., K. J. Boote, B. A. Kimball, L. H. Ziska, R. C. Izaurralde, D. Ort, A. M. Thomson, and D. Wolfe. 2011. “Climate Impacts on Agriculture: Implications for Crop Production.” Agronomy Journal 103 (2): 351–370. doi:  10.2134/agronj2010.0303.Google Scholar
  46. Hoekema, D. J., and V. Sridhar. 2011. “Relating Climatic Attributes and Water Resources Allocation: A Study Using Surface Water Supply and Soil Moisture Indices in the Snake River Basin, Idaho.” Water Resources Research 47: W07536. doi:  10.1029/2010WR009697.Google Scholar
  47. Huggins, D. R. 2010. “Site-Specific N Management for Direct-Seed Cropping Systems.” In Climate Friendly Farming: Improving the Carbon Footprint of Agriculture in the Pacific Northwest, edited by C. Kruger, G. Yorgey, S. Chen, H. Collins, C. Feise, C. Frear, D. Granatstein, S. Higgins, D. Huggins, C. MacConnell, K. Painter, C. Stöckle. CSANR Research Report 2010–001. Washington State University: http://csanr.wsu.edu/pages/Climate_Friendly_Farming_Final_Report/.Google Scholar
  48. Huggins, D. R., and W. L. Pan. 2003. “Key Indicators for Assessing Nitrogen Use Efficiency in Cer eal-Based Agroecosystems.” Journal of Crop Production 8: 57–86. doi:  10.1300/J144v08n01_07.Google Scholar
  49. IPCC 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, and D. Xiaosu. New York: Cambridge University Press, 881 pp. http://www.ipcc.ch/ipccreports/tar/wgl/.Google Scholar
  50. IPCC 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Core Writing Team, R. K. Pachauri, and A. Reisinger. IPCC, Geneva, Switeerland, 104 pp.Google Scholar
  51. Izaurralde, R. C., A. M. Thomson, J. A. Morgan, P. A. Fay, H. W. Polley, and J. L. Hatfield. 2011. “Climate Impacts on Agriculture: Implications for Forage and Rangeland Production.” Agronomy Journal 103 (2): 371–381. doi:  10.2134/agronj2010.0304.Google Scholar
  52. Joern, A., and S. B. Gaines. 1990. “Population Dynamics and Regulation in Grasshoppers.” In Biology of Grasshoppers, edited by R. F. Chapman and A. Joern, 415–482. Wiley Press.Google Scholar
  53. Jones, G. V. 2005. “Climate Change in the Western U.S. Grape Growing Regions.” Acta Horticulturae (ISHS), 689: 41–60. http://www.actahort.org/books/689/689_2.htm.Google Scholar
  54. Jones, G. V. 2006a. “Climate and Terroir: Impacts of Climate Variability and Change on Wine.” In Fine Wine and Terrior – The Geoscience Perspective, edited by R. W. Macqueen, and L. D. Meinert. Geoscience Canada Reprint Series Number 9, Geological Association of Canada, St. John’s, Newfoundland, 247 pages, http://www.sou.edu/envirostudies/gjones_docs/GJones%20Climate%20Change%20Geoscience%20Canada.pdf.Google Scholar
  55. Jones, G. V. 2006b. “Climate Change and Wine: Observations, Impacts, and Future Implications.” Australia and New Zealand Wine Industry Journal 21 (4): 21–26.Google Scholar
  56. Jones, G. V. 2007. “Climate Change: Observations, Projections, and General Implications for Viticulture and Wine Production.” Practical Winery and Vineyard July/August: 44–64.Google Scholar
  57. Julian, J. W., C. F. Seavert, P. A. Skinkis, P. VanBuskirk, and S. Castagnoli. 2008. “Vineyard Economics: Establishing and Producing Pinot Noir Wine Grapes in Western Oregon.” Oregon State University Extension Service Bulletin EM 8969-E, August: 1–17. http://arec.oregonstate.edu/oaeb/files/pdf/EM8969-E.pdf.Google Scholar
  58. Kruger, C., G. Yorgey, S. Chen, H. Collins, C. Feise, C. Frear, D. Granatstein, S. Higgins, D. Huggins, C. MacConnell, K. Painter, C. Stöckle. 2010. “Climate Friendly Farming: Improving the Carbon Footprint of Agriculture in the Pacific Northwest.” CSANR Research Report 2010–001. Washington State University: http://csanr.wsu.edu/pages/Climate_Friendly_Farming_Final_Report/.Google Scholar
  59. Kruger, C., G. Yorgey, and C. Stöckle. 2011. “Climate Change and Agriculture in the Pacific Northwest.” Rural Connections June: 51–54. http://wrdc.usu.edu/files/uploads/Rural%20Connections/RCJUNllw.pdf.Google Scholar
  60. Kunkel, K. E., L. E. Stevens, S. E. Stevens, L. Sun, E. Janssen, D. Wuebbles, K. T. Redmond, and J. G. Dobson. 2013. “Regional Climate Trends and Scenarios for the U.S. National Climate Assessment. Part 6. Climate of the Northwest U.S.” NOAA Technical Report NESDIS 142–6, 75 pp. http://scenarios.globalchange.gov/report/regional-climate-trends-and-scenarios-us-national-climate-assessment-part-6-climate-northwest.Google Scholar
  61. Lee, J., S. De Gryze, and J. Six. 2009. “Effect of Climate Change on Field Crop Production in the Central Valley of California.” California Climate Change Center, CEC-500-2009-041-D.Google Scholar
  62. Lichthardt, J., and R. K. Mosely. 1997. “Status and Conservation of the Palouse Grassland in Idaho.” Idaho Department of Fish and Game, US Fish and Wildlife Service, Purchase Order No. 14420-5-0395.Google Scholar
  63. Littell, J. S., M. McGuire, M. M. Eisner, L. C. Whitely Binder, and A. K. Snover, eds. 2009. “Executive Summary.” In Washington Climate Change Impacts Assessment: Evaluating Washington’s Future in a Changing Climate, edited by M. M. Eisner, J. Littell, and L. Whitely Binder. Climate Impacts Group, University of Washington, Seattle, Washington, www.cses.washington.edu/db/pdf/wacciaexecsummary638.pdf.Google Scholar
  64. Liu, D., and J. T. Trumble. 2007. “Comparative Fitness of Invasive and Native Populations of the Potato Psyllid (Bactericera cockerelli).” Entomologia Experimentalis et Applicata 123 (1): 35–42. doi:  10.1111/j.l570-7458.2007.00521.x.Google Scholar
  65. Long, S. P., E. A. Ainsworth, A. Rogers, and D. R. Ort. 2004. “Rising Atmospheric Carbon Dioxide: Plants FACE the Future.” Annual Review of Plant Biology 55: 591–628. doi:  10.1146/annurev.arplant.55.031903.141610.Google Scholar
  66. Looney, C., and S. D. Eigenbrode. 2012. “Characteristics and Distribution of Palouse Prairie Remnants: Implications for Conservation Planning.” Natural Areas Journal 32 (1): 75–85. doi:  10.3375/043.032.0109.Google Scholar
  67. Losey, J. E., and M. Vaughan. 2006. “The Economic Value of Ecological Services Provided by Insects.” BioScience 56 (4): 311–323. doi:  10.1641/0006-3568(2006)56[311:TEVOES]2,O.CO;2.Google Scholar
  68. Luedeling, E., and P. H. Brown. 2011. “A Global Analysis of the Comparability of Winter Chill Models for Fruit and Nut Trees.” International Journal of Biometeorology 55 (3): 411–421. doi:  10.1007/s00484-010-0352-y.Google Scholar
  69. Luedeling, E., E. H. Girvete, M.A. Semenov, and P.H. Brown. 2011. “Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees.” PLoS ONE 6 (5): e20155. doi:  10.1371/journal.pone.0020155.Google Scholar
  70. Mackun, P. J. 2009. “Population Change in Central and Outlying Areas of Metropolitan Statistical Areas: 2000 to 2007.” Current Population Reports P25-1136. US Department of Commerce, Economics and Statistics Administration, US Census Bureau, Washington, DC.Google Scholar
  71. Mader, T. L., K. L. Frank, J. A. Harrington, G. L. Hahn, and J. A. Nienaber. 2009. “Potential Climate Change Effects on Warm-Season Livestock Production in the Great Plains.” Climatic Change 97: 529–541. doi:  10.1007/sl0584-009-9615-l.Google Scholar
  72. Mancuso, M., and R. Moseley. 1994. “Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.” Bonneville Power Administration Project 92-069. Idaho Department of Fish and Game, Boise, Idaho.Google Scholar
  73. Matthiessen, J. N., and J. A. Kirkegaard. 2006. “Biofumigation and Enhanced Biodegradation: Opportunity and Challenge in Soilborne Pest and Disease Management.” Critical Reviews in Plant Science 25 (3): 235–265. doi:  10.1080/07352680600611543.Google Scholar
  74. Milchunas, D. G., A. R. Mosier, J. A. Morgan, D. R. LeCain, J. Y. King, and J. A. Nelson. 2005. “Elevated CO2 and Defoliation Effects on a Shortgrass Steppe: Forage Quality Versus Quantity for Ruminants.” Agriculture Ecosystems & Environment 111: 166-184. doi:  10.1016/j.agee.2005.06.014.Google Scholar
  75. Morgan, J. A., A. R. Mosier, D. G. Milchunas, D. R. LeCain, J. A. Nelson, and W. J. Parton. 2004. “CO2 Enhances Productivity, Alters Species Composition, and Reduces Digestibility of Shortgrass Steppe Vegetation.” Ecological Applications 14 (1): 208–219. doi:  10.1890/02–5213.Google Scholar
  76. Mote, P. W. 2006. “Climate-Driven Variability and Trends in Mountain Snowpack in Western North America.” Journal of Climate 19 (23): 6209–6220. doi:  10.1175/JCLI3971.1.Google Scholar
  77. Mullan, D., D. Favis-Mortlock, and R. Fealy. 2012. “Addressing Key Limitations Associated with Modeling Soil Erosion under the Impacts of Future Climate Change.” Agricultural and Forest Meteorology 156 (15): 18–30. doi:  10.1016/j.agrformet.2011.12.004.Google Scholar
  78. Nakićenović, N., O. Davidson, G. Davis, A. Grübler, T. Kram, E. Lebre La Rovere, B. Mete, T. Morita, W. Pepper, H. Pitcher, A. Sankovshi, P. Shukla, R. Swart, R. Watson, and Z. Dadi. 2000. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 599 pp. http://www.grida.no/climate/ipcc/emission/index.htm.Google Scholar
  79. Nene, G., A. M. Azzam, and K. Schoengold. 2009. “Environmental Regulations and the Structure of U.S. Hog Farms.” Paper presented at the Agricultural and Applied Economics Association Joint Annual Meeting, Milwaukee, Wisconsin, July 26–29. http://ageconsearch.umn.edu/bitstream/49395/2/AAEA%20final%20paper.pdf.Google Scholar
  80. Nienaber, J. A., and G. L. Hahn. 2007. “Livestock Production System Management Responses To Thermal Challenges.” International Journal of Biometeorology 52 (2): 149–157. doi: 10.1007/s00484-007-0103-x.Google Scholar
  81. Oregon State Board of Agriculture. 2011. State of Oregon Agriculture: Industry Report from the State Board of Agriculture, 2009–11, State of Oregon Agriculture, 36 pp. http://www.oregon.gov/ODA/docs/pdf/bd_rpt.pdf.Google Scholar
  82. Ortiz, R., K. D. Sayre, B. Govaerts, R. Gupta, G. V. Subbarao, T. Ban, D. Hodson, J. M. Dixon, J. I. Ortiz-Monasterio, and M. Reynolds. 2008. “Climate Change: Can Wheat Beat the Heat?” Agriculture, Ecosystems, and Environment 126: 46–58. doi:  10.1016/j.agee.2008.01.019.Google Scholar
  83. Ostrom, M. R., and R. A. Jussaume, Jr. 2007. “Assessing the Significance of Direct Farmer-Consumer Linkages as a Change Strategy in Washington State: Civic or Opportunistic?” In Remaking the North American Food System: Strategies for Sustainability, edited by C.C. Hinrichs and T. Lyson. Lincoln: University of Nebraska Press.Google Scholar
  84. Parmesan, C. 2006. “Ecological and Evolutionary Responses to Recent Climate Change.” Annual Review of Ecology Evolution and Systematics 37: 637–669. doi:  10.1146/annurev.ecolsys.37.091305.110100.Google Scholar
  85. Parry, M., C. Rosenzweig, A. Iglesias, M. Livermore, G. Fischer. 2004. “Effects of Climate Change on Global Food Production under SRES Emissions and Socio-Economic Scenarios.” Global Environmental Change 14 (1): 53–67. doi:  10.1016/j.gloenvcha.2003.10.008.Google Scholar
  86. Parry, M., C. Rosenzweig, and M. Livermore. 2005. “Climate Change, Global Food Supply and Risk Of Hunger.” Philosophical Transactions of the Royal Society, Series B 360 (1463): 2125–2138. doi:  10.1098/rstb.2005.1751.Google Scholar
  87. Parton, W. J., J. A. Morgan, R. H. Kelly, and D. Ojima. 2001. “Modeling Soil C Responses to Environmental Change in Grassland Systems.” In The Potential of U.S. Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect, edited by R. F. Follet, J. M. Kimble and R. Lai, 371–398. Boca Raton, FL: CRC Press.Google Scholar
  88. Polley, H. W., W. Emmerich, J. A. Bradford, P. L. Sims, D. A. Johnson, N. Z. Sallendra, T. J. Svejcar, R. F. Angell, A. B. Frank, R. L. Phillips, K. A. Snyder, J. A. Morgan, J. Sanabria, P. C. Mielnick, and W. A. Dugas. 2010. “Precipitation Regulates the Response of Net Ecosystem CO2 Exchange to Environmental Variation on United States Rangelands.” Rangeland Ecology & Management 63 (2): 176–186. doi:  10.2111/REM-D-09-00015.1.Google Scholar
  89. Poorter, H. 1993. “Interspecific Variation in the Growth Response of Plants to an Elevated Ambient CO2 Concentration.” Vegetatio 104–105 (1): 77–97. doi:  10.1007/BF00048146.Google Scholar
  90. Pruski, F. F., and M. A. Nearing. 2002. “Climate-Induced Changes in Erosion During the 21st Century for Eight U.S. Locations.” Water Resource Research 38:1298. doi:  10.1029/2001WR000493.Google Scholar
  91. Ritten, J. P., W. M. Frasier, C. T. Bastian, and S. T. Gray. 2010. “Optimal Rangeland Stocking Decisions Under Stochastic and Climate-Impacted Weather.” American Journal of Agricultural Economics 92 (4): 1242–1255. doi:  10.1093/ajae/aaq052.Google Scholar
  92. Ritten, J. P., B. S. Rashford, and C. T. Bastian. 2011. “Can Rangeland Carbon Sequestration Help Livestock Producers and Rural Economies Adapt to Climate Change?” Rural Connections June: 27–32. http://wrdc.usu.edu/files/uploads/Rural%20Connections/RCJUNllw.pdf Google Scholar
  93. Roberts, D., and S. Rao. 2012. “Extension Leads Multi-Agency Team in Suppressing a Pest in the West.” Journal of Extension 50 (2): 2FEA10. http://www.joe.org/joe/2012april/al0.php.
  94. Robertson, G. P., E. A. Paul, and R. R. Harwood. 2000. “Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere.” Science 289 (5846): 1922–1925. doi:  10.1126/science.289.5486.1922.Google Scholar
  95. Rosenzweig, C., and M. L. Parry. 1994. “Potential Impact of Climate Change on World Food Supply.” Nature 367 (6459): 133–138. doi:  10.1038/367133a0.Google Scholar
  96. Rosenzweig, C., J. Phillips, R. Goldberg, J. Carroll, and T. Hodges. 1996. “Potential Impacts of Climate Change on Citrus and Potato Production in the US.” Agricultural Systems 52 (4): 455–479. doi:  10.1016/0308-521X(95)00059-E.Google Scholar
  97. Salisbury, P. A., and M. J. Barbetti. 2011. “Breeding Oilseed Brassica for Climate Change.” In Crop Adaptation to Climate Change, edited by S. D. Yadav, R. J. Redden, J. L. Hatfield, H. Lotee-Campen, and A. E. Hall. 448–463. John Wiley & Sons, Inc.Google Scholar
  98. Saure, M. C. 1985. “Dormancy Release in Deciduous Fruit Trees.” Horticultural Reviews 7: 239–300. doi:  10.1002/9781118060735.ch6.Google Scholar
  99. Schlenker, W., and M. J. Roberts. 2009. “Nonlinear Temperature Effects Indicate Severe Damages to U.S. Crop Yields under Climate Change.” Proceedings of the National Academy of Sciences 106 (37): 15594–15598. doi:  10.1073/pnas.0906865106.Google Scholar
  100. Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O’Mara, C. Rice, B. Scholes, and O. Sirotenko. 2007. “Agriculture.” In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by B. Mete, O. Davidson, P. Bosch, R. Dave, and L. Meyer. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  101. Snyder, C. S., T. W. Bruulsema, T. L. Jensen, and P. E. Fixen. 2009. “Review of Greenhouse Gas Emissions From Crop Production Systems And Fertilizer Management Effects.” Agriculture, Ecosystems and Environment 133: 247–266. doi:  10.1016/j.agee.2009.04.021.Google Scholar
  102. Sorte, B., P. Lewin, and P. Opfer. 2011. “Oregon Agriculture and the Economy: An Update.” Oregon State University Extension Service, Rural Studies Program, http://ruralstudies.oregonstate.edu/sites/default/files/pub/pdf/OregonAgEconomyAnUpdate.pdf.Google Scholar
  103. Stöckle, C., S. Higgins, A. Kemanian, R. Nelson, D. Huggins, J. Marcos, and H. Collins. 2012. “Carbon Storage and Nitrous Oxide Emissions of Cropping Systems in Eastern Washington: A Simulation Study.” Journal of Soil and Water Conservation 67 (5): 365–377. doi:  10.2489/jswc.67.5.365.Google Scholar
  104. Stöckle, C. O., R. L. Nelson, S. Higgins, J. Brunner, G. Grove, R. Boydston, M. Whiting, and C. Kruger. 2010. “Assessment of Climate Change Impact on Eastern Washington Agriculture.” Climatic Change 102: 77–102. doi:  10.1007/sl0584-010-9851-4.Google Scholar
  105. Sutherst R. W., F. Constable, K. J. Finlay, R. Harrington, J. Luck, and M. P. Zalucki. 2011. “Adapting to Crop Pest and Pathogen Risks under a Changing Climate.” Wiley Interdisciplinary Reviews: Climate Change 2 (2): 220–237.Google Scholar
  106. Thomson, A. M., R. A. Brown, N. J. Rosenberg, R. C. Izaurralde, and V. Benson. 2005. “Climate Change Impacts for the Conterminous USA: An Integrated Assessment. Part 3: Dryland Production of Grain and Forage Crops.” Climatic Change 69 (1): 43–65. doi:  10.1007/S10584-005-3612-9.Google Scholar
  107. Thomson, L. J., S. Macfadyen, and A. A. Hoffmann. 2010. “Predicting the Effects of Climate Change on Natural Enemies of Agricultural Pests.” Biological Control 52 (3): 296–306. doi:  10.1016/j.biocontrol.2009.01.022.Google Scholar
  108. Timlin, D., S. M. L. Rahman, J. Baker, V. R. Reddy, D. Fleisher, and B. Quebedeaux. 2006. “Whole Plant Photosynthesis, Development, and Carbon Partitioning in Potato as a Function of Temperature.” Agronomy Journal 98 (5): 1195–1203. doi:  10.2134/agronj2005.0260.Google Scholar
  109. Tisdale, E. W. 1986. “Native Vegetation of Idaho.” Rangelands 8 (5): 202–207. http://www.jstor.org/stable/3901016.Google Scholar
  110. Trumble, J. T., and C. D. Butler. 2009. “Climate Change Will Exacerbate California’s Insect Pest Problems.” California Agriculture 63 (2): 73–78. doi:  10.3733/ca.v063n02p73.Google Scholar
  111. Tubiello, F. N., C. Rosenzweig, R. A. Goldberg, S. Jagtap, and J. W. Jones. 2002. “Effects of Climate Change on US Crop Production: Simulation Results Using Two Different GCM Scenarios. Part I: Wheat, Potato, Maize, and Citrus.” Climate Research 20 (3): 259–270. doi:  10.3354/cr020259.Google Scholar
  112. Tubiello, F. N., J.-F. Soussana, and S. M. Howden. 2007. “Crop and Pasture Response to Climate Change.” Proceedings of the National Academy of Sciences 104 (50): 19686–19690. doi:  10.1073/pnas.0701728104.Google Scholar
  113. Turner, R. K., and G. C. Daily. 2008. “The Ecosystem Services Framework and Natural Capital Conservation.” Environmental and Resources Economics: 39 (1): 25–35. doi:  10.1007/S10640-007-9176-6.Google Scholar
  114. US Department of Agriculture. 2009. Summary Report: 2007 National Resources Inventory, Natural Resources Conservation Service, Washington, DC, and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa. 123 pp. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdbl041379.pdf.Google Scholar
  115. US Department of Agriculture Census of Agriculture. 2010. “Production Fact Sheet.” http://www.agcensus.usda.gov/Publications/2007/Qnline_Highlights/Fact_Sheets/Production/.Google Scholar
  116. US Department of Agriculture National Agricultural Statistics Service. 2006. “2005 Oregon Vineyard and Winery Report.” February. http://www.nass.usda.gov/Statistics_by_State/Oregon/Publications/Vineyard_and_Winery/vw-2006.pdf.Google Scholar
  117. US Department of Agriculture National Agricultural Statistics Service. 2011a. “2010 Washington Wine Grape Production up 3 Percent; Cabernet Sauvignon up 16 Percent; Chardonnay down 14 Percent.” January 21. http://www.nass.usda.gov/Statistics_by_State/Washington/Publications/Fruit/grapell.pdf.Google Scholar
  118. US Department of Agriculture National Agricultural Statistics Service. 2011b. “Washington Vineyard Acreage Report 2011.” August 16. http://www.nass.usda.gov/Statistics_by_State/Washington/Publications/Fruit/VineyardAcreage2011.pdf.Google Scholar
  119. US Department of Agriculture National Agricultural Statistics Service. 2012a. “2011 Oregon Vineyard and Winery Report.” April. http://www.nass.usda.gov/Statistics_by_State/Oregon/Publications/Vineyard_and_Winery/v_2011_final.pdf.Google Scholar
  120. US Department of Agriculture National Agricultural Statistics Service. 2012b. Crop Production, 2011 Summary, ISSN:  1057-7823.Google Scholar
  121. Vano, J. A., M. J. Scott, N. Voisin, C. O. Stöckle, A. F. Hamlet, K. E. B. Mickelson, M. M. Eisner, and D. P. Lettenmaier. 2010. “Climate Change Impacts on Water Management and Irrigated Agriculture in the Yakima River Basin, Washington, USA.” Climatic Change 102: 287-317. doi:  10.1007/sl0584-010-9856-z.Google Scholar
  122. Wan, S. Q., D. F. Hui, L. Wallace, and Y. Q. Luo. 2005. “Direct and Indirect Effects of Experimental Warming on Ecosystem Carbon Processes in a Tallgrass Prairie.” Global Biogeochemical Cycles 19: GB2014. doi:  10.1029/2004GB002315.Google Scholar
  123. Washington State Department of Agriculture. 2011. “Agriculture – A Cornerstone of Washington’s Economy”. http://agr.wa.gov/AgInWa/docs/126-CropProductionMap11-11.pdf.Google Scholar
  124. Washington State Department of Ecology. 2011. “Columbia River Basin Long-Term Water Supply and Demand Forecast.” Publication No. 11-12-011. http://www.ecy.wa.gov/programs/wr/cwp/forecast/reports.html.Google Scholar
  125. Washington State University Tree Fruit Research and Extension Center. 2012. “The Campaign for Tree Fruit.” http://treefruit.wsu.edu/campaign/.Google Scholar
  126. Watson, P., G. Taylor, and S. Cooke. 2008. “The Contribution of Agriculture to Idaho’s Economy: 2006.” CIS Bulletin 1144, University of Idaho Extension, http://www.cals.uidaho.edu/edComm/pdf/CIS/CIS1144.pdf.Google Scholar
  127. Weinberger, J. H. 1950. “Chilling Requirements of Peach Varieties.” Proceedings of the American Society of Horticultural Science 56:122–128.Google Scholar
  128. White, M. A., N. S. Diffenbaugh, G. V. Jones, J. S. Pal, and F. Giorgi. 2006. “Extreme Heat Reduces and Shifts United States Premium Wine Production in the 21st Century.” Proceedings of the National Academy of Sciences 103 (30): 11217–11222. doi:  10.1073/pnas.0603230103.Google Scholar
  129. Willamette Valley Specialty Seed Association). 2012. http://www.thewvssa.org/documents/Position_Rapeseed.pdf.
  130. Yorgey, G., C. Kruger, R. Frear, R. Shumway, C. Bishop, S. Chen, and C. MacConnell. 2011. “Anaerobic Digestion in the Pacific Northwest.” Rural Connections June: 33–38. http://whatcom.wsu.edu/ag/documents/anaerobic/AnaerobidDigestion.pdf.Google Scholar

Copyright information

© Oregon Climate Change Reasearch Institute 2013

Authors and Affiliations

  • Sanford D. Eigenbrode
    • 1
  • Susan M. Capalbo
    • 2
  • Laurie L. Houston
    • 3
  • Jodi Johnson-Maynard
    • 4
  • Chad Kruger
    • 5
  • Beau Olen
    • 6
  1. 1.Regional Approaches to Climate Change - Pacific Northwest Agriculture, Plant, Soil, and Entomological SciencesUniversity of IdahoUSA
  2. 2.Department of Applied EconomicsOregon State UniversityUSA
  3. 3.Department of Applied EconomicsOregon State UniversityUSA
  4. 4.Plant, Soil, and Entomological SciencesUniversity of IdahoUSA
  5. 5.Center for Sustaining Agriculture and Natural ResourcesWashington State UniversityUSA
  6. 6.Department of Agricultural and Resource EconomicsOregon State UniversityUSA

Personalised recommendations