Future Climate: Projected Extremes

  • Alexander Gershunov
  • Balaji Rajagopalan
  • Jonathan Overpeck
  • Kristen Guirguis
  • Dan Cayan
  • Mimi Hughes
  • Michael Dettinger
  • Chris Castro
  • Rachel E. Schwartz
  • Michael Anderson
  • Andrea J. Ray
  • Joe Barsugli
  • Tereza Cavazos
  • Michael Alexander
  • Francina Dominguez
Part of the NCA Regional Input Reports book series (NCARIR)

Abstract

Extreme events can be defined in many ways. Typical definitions of weather and climate extremes consider either the maximum value during a specified time interval (such as season or year) or exceedance of a threshold (the “peaks-over-threshold” [POT] approach), in which universal rather than local thresholds are frequently applied. For example, temperatures above 95°F (35°C) are often considered extreme in most locations across the United States, except in areas such as the low-lying deserts of Arizona and California, where such temperatures are typical in the summer. Temperatures at these levels are obviously extreme for living organisms from a non-adapted, physiological perspective, and technological adaptation for humans is required for day-to-day functioning in such temperatures. But such temperatures are not necessarily extreme from the statistical or local climate perspectives. In statistics, extremes are considered low-probability events that differ greatly from typical occurrences. The IPCC defines extremes as 1% to 10% of the largest or smallest values of a distribution (Trenberth et al. 2007). Studies over large or complex regions marked by significant climatic variation require definitions that are relevant to local climate. Across the Southwest, location-specific definitions of extreme temperature, precipitation, humidity, and wind are required if a meaningful region-wide perspective is desired.

References

  1. Arriaga-Ramírez, S., and T. Cavazos. 2010. Regional trends of daily precipitation indices in northwest Mexico and southwest United States. Journal of Geophysical Research 115: D14111, doi: 10.1029/2009JD013248.CrossRefGoogle Scholar
  2. Bao, J. W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak. 2006. Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Monthly Weather Review 134:1063–1080.CrossRefGoogle Scholar
  3. Barlow, M. 2011. Influence of hurricane-related activity on North American extreme precipitation. Geophysical Research Letters 38: L04705, doi: 10.1029/2010GL046258.CrossRefGoogle Scholar
  4. Cavazos, T., and S. Arriaga-Ramírez. 2012. Downscaled climate change scenarios for Baja California and the North American monsoon during the 21st century. Journal of Climate 25:5904–5915.CrossRefGoogle Scholar
  5. Cavazos, T., C. Turrent, and D. P. Lettenmaier. 2008. Extreme precipitation trends associated with tropical cyclones in the core of the North American Monsoon. Geophysical Research Letters 35: L21703, doi: 10.1029/2008GL035832.CrossRefGoogle Scholar
  6. Cayan, D. R., T. Das, D. W. Pierce, T. P. Barnett, M. Tyree, and A. Gershunov. 2010. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proceedings of the National Academy of Sciences 107:21271–21276, doi: 10.1073/pnas.0912391107.CrossRefGoogle Scholar
  7. Cayan, D. R., K. T. Redmond, and L. G. Riddle. 1999. ENSO and hydrologic extremes in the western United States. Journal of Climate 12:2881–2893.CrossRefGoogle Scholar
  8. Chou, C., and C-W. Lan. 2011. Changes in the annual range of precipitation under global warming. Journal of Climate 25:222–235.CrossRefGoogle Scholar
  9. Conil, S., and A. Hall. 2006. Local regimes of atmospheric variability: A case study of southern California. Journal of Climate 19:4308–4325.CrossRefGoogle Scholar
  10. Cook, E. R., R. Seager, R. R. Heim, R. S. Vose, C. Herweijer, and C. Woodhouse. 2009. Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term paleoclimate context. Journal of Quaternary Science 25:48–61, doi:  10.1002/jqs.1303. http://www.ldeo.columbia.edu/res/div/ocp/pub/cook/2009_Cook_IPCC_paleo-drought.pdf CrossRefGoogle Scholar
  11. Cook, E. R., C. Woodhouse, C. M. Eakin, D. M. Meko, and D. W. Stahle. 2004. Long-term aridity changes in the western United States. Science 306:1015–1018.CrossRefGoogle Scholar
  12. Das, T., M. D. Dettinger, D. R. Cayan, and H. G. Hidalgo. 2011. Potential increase in floods in California’s Sierra Nevada under future climate projections. Climatic Change 109 (Suppl. 1): S71–S94, doi: 10.1007/s10584-011-0298-z.CrossRefGoogle Scholar
  13. Dettinger, M. D. 2011. Climate change, atmospheric rivers and floods in California - A multimodel analysis of storm frequency and magnitude changes. Journal of the American Water Resources Association 47:514–523.CrossRefGoogle Scholar
  14. Dettinger, M. D., D. R. Cayan, H. F. Diaz, and D. M. Meko. 1998. North–south precipitation patterns in western North America on interannual-to-decadal timescales. Journal of Climate 11:3095–3111.CrossRefGoogle Scholar
  15. Dettinger, M. D., H. Hidalgo, T. Das, D. Cayan, and N. Knowles. 2009. Projections of potential flood regime changes in California. Final Paper CEC-500-2009-050. Sacramento: California Climate Change Center. http://www.energy.ca.gov/2009publications/CEC-500-2009-050/CEC-500-2009-050-F.PDF.Google Scholar
  16. Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. Cayan. 2011. Atmospheric rivers, floods, and the water resources of California. Water 3:455-478. http://www.mdpi.com/2073-4441/3/2/445/.CrossRefGoogle Scholar
  17. Dettinger, M. D., F. M. Ralph, M. Hughes, T. Das, P. Neiman, D. Cox, G. Estes, et al. 2011. Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California. Natural Hazards 60:1085–1111, doi: 10.1007/s11069-011-9894-5.CrossRefGoogle Scholar
  18. Diffenbaugh, N. S., and M. Ashfaq. 2010. Intensification of hot extremes in the United States. Geophysical Research Letters 37: L15701, doi: 10.1029/2010GL043888.CrossRefGoogle Scholar
  19. Dominguez, F., E. Rivera, D. P. Lettenmaier, and C.L. Castro. 2012. Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models. Geophysical Research Letters 39: L05803, doi:  10.1029/2011GL050762.CrossRefGoogle Scholar
  20. Favre, A., and A. Gershunov. 2009. North Pacific cyclonic and anticyclonic transients in a global warming context: Possible consequences for western North American daily precipitation and temperature extremes. Climate Dynamics 32:969–987.CrossRefGoogle Scholar
  21. Field, C. B., V. Barros, T. Stocker, and Q. Dahe, eds. 2011. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. http://ipcc-wg2.gov/SREX/report/.Google Scholar
  22. Gershunov, A., and T. P. Barnett. 1998. ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. Journal of Climate 11:1575–1586.CrossRefGoogle Scholar
  23. Gershunov, A., T. Barnett, D. Cayan, T. Tubbs, and L Goddard. 2000. Predicting and downscaling ENSO impacts on intraseasonal precipitation statistics in California: The 1997–1998 event. Journal of Hydrometeorology 1:201–209.CrossRefGoogle Scholar
  24. Gershunov, A., and D. R. Cayan. 2003. Heavy daily precipitation frequency over the contiguous United States: Sources of climate variability and seasonal predictability. Journal of Climate 16:2752–2765.CrossRefGoogle Scholar
  25. Gershunov, A., D. Cayan, and S. Iacobellis. 2009. The great 2006 heat wave over California and Nevada: Signal of an increasing trend. Journal of Climate 22:6181–6203.CrossRefGoogle Scholar
  26. Gershunov, A., and K. Guirguis. 2012. California heat waves in the present and future. Geophysical Research Letters 39: L18710, doi: 10.1029/2012/GL052979.CrossRefGoogle Scholar
  27. Groisman, P. V., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore. 2004. Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. Journal of Hydrometeorology 5:64–85, doi: 10.1175/1525-7541.CrossRefGoogle Scholar
  28. Groisman, P. Y., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev. 2005. Trends in intense precipitation in the climate record. Journal of Climate 18:1326–1350.CrossRefGoogle Scholar
  29. Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman. 2010. Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophysical Research Letters 37: L20401, doi: 10.1029/2010GL044696.CrossRefGoogle Scholar
  30. Guirguis, K., A. Gershunov, R. Schwartz and S. Bennett. 2011. Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophysical Research Letters 38: L17701, doi: 10.1029/2011GL048762.CrossRefGoogle Scholar
  31. Hamlet, A. F., and D. P. Lettenmaier. 2007. Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resources Research 43: W06427, doi: 10.1029/2006WR005099.CrossRefGoogle Scholar
  32. Hirschboeck, K. K. 1991. Climate and floods. In National water summary 1988–89: Hydrologic events and floods and droughts, comp. R. W. Paulson, E. B. Chase, R. S. Roberts, and D. W. Moody, 99–104. U.S. Geological Survey Water-Supply Paper 2375. Washington, DC: U.S. Government Printing Office.Google Scholar
  33. Hughes, M., and A. Hall. 2010. Local and synoptic mechanisms causing Southern California’s Santa Ana winds. Climate Dynamics 34:847–857.CrossRefGoogle Scholar
  34. Hughes M., A. Hall, and J. Kim. 2011. Human-induced changes in wind, temperature and relative humidity during Santa Ana events. Climatic Change 109 (Suppl. 1): S119–S132, doi: 10.1007/s10584-011-0300-9.CrossRefGoogle Scholar
  35. Intergovernmental Panel on Climate Change (IPCC). 2007. Summary for policymakers. In Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller. Cambridge: Cambridge University Press.Google Scholar
  36. Kharin, V. V., F. W. Zwiers, X. Zhang, and G. Hegerl. 2007. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. Journal of Climate 20:1419–1444.CrossRefGoogle Scholar
  37. Kodra, E., K. Steinhauser, and A. R. Ganguly. 2011. Persisting cold extremes under 21st-century warming scenarios. Geophysical Research Letters 38: L08705. doi: 10.1029/2011GL047103.CrossRefGoogle Scholar
  38. Lu, J., C. Deser, and T. Reichler. 2009. The cause for the widening of the tropical belt since 1958. Geophysical Research Letters 36: L03803, doi:  10.1029/GL036076.CrossRefGoogle Scholar
  39. Lu, J., G. A. Vecchi, and T. Reichler. 2007. Expansion of the Hadley cell under global warming. Geophysical Research Letters 34: L06805, doi: 10.1029/2006GL028443.CrossRefGoogle Scholar
  40. Mahoney, K., M. A. Alexander, G. Thompson, J. J. Barsugli, and J. D. Scott. 2012. Changes in hail and flood risk in high-resolution simulations over the Colorado Mountains. Nature Climate Change 2:125–131, doi: 10.1038/nclimate1344.CrossRefGoogle Scholar
  41. Mastrandrea, M. D., C. Tebaldi, C. W. Snyder, and S. H. Schneider. 2011. Current and future impacts of extreme events in California. Climatic Change 109 (Suppl. 1): S43–S70, doi 10.1007/ s10584-011-0311-6.CrossRefGoogle Scholar
  42. Maurer, E. P., and H. G. Hidalgo. 2008. Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrology and Earth System Sciences 12:551–563.CrossRefGoogle Scholar
  43. MacDonald, G. M., D. W. Stahle, J. Villanueva Diaz, N. Beer, S. J. Busby, J. Cerano-Paredes, J. E. Cole, et al. 2008. Climate warming and twenty-first century drought in southwestern North America. Eos Transactions AGU 89:82.CrossRefGoogle Scholar
  44. Meehl, G. A., T. Karl, D. R. Easterling, S. Changnon, R. Pielke, D. Changnon, J. Evans, et al. 2000. An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bulletin of the American Meteorological Society 81:413–416.CrossRefGoogle Scholar
  45. Moritz, M., T. Moody, M. Krawchuk, M. Hughes, and A. Hall. 2010. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophysical Research Letters 37: L04801.CrossRefGoogle Scholar
  46. Nakićenović, N., and R. Swart, eds. 2000. Special report on emissions scenarios: A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  47. Pierce, D. W., T. Das, D. R. Cayan, E. P. Maurer, N. Miller, Y. Bao, M. Kanamitsu, et al. 2012. Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Climate Dynamics published online, doi: 10.1007/ s00382-012-1337-9.Google Scholar
  48. Rajagopalan, B., E. Cook, U. Lall, and B. Ray. 2000. Spatiotemporal variability of ENSO and SST teleconnections to summer drought over the United States during the twentieth century. Journal of Climate 13:4244–4255.CrossRefGoogle Scholar
  49. Ralph, F. M., and M. D. Dettinger. 2011. Storms, floods and the science of atmospheric rivers. Eos Transactions AGU 92:265–266.CrossRefGoogle Scholar
  50. Ralph, F. M., M. D. Dettinger, A. White, D. Reynolds, D. Cayan, T. Schneider, R. Cifelli, et al. 2011. A vision of future observations for western US extreme precipitation events and flooding: Monitoring, prediction and climate. Report to the Western States Water Council, Idaho Falls.Google Scholar
  51. Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White. 2006. Flooding on California’s Russian River: Role of atmospheric rivers. Geophysical Research Letters 33: L13801, doi: 10.1029/2006GL026689.CrossRefGoogle Scholar
  52. Salas-Mélia, D., F. Chauvin, M. Déqué, H. Douville, J. F. Guérémy, P. Marquet, S. Planton, J. F. Royer, and S. Tyteca. 2005. Description and validation of the CNRM-CM3 global coupled model. CNRM Working Note 53. Toulouse, France: Centre National de Recherches Météorologiques. http://www.cnrm.meteo.fr/scenario2004/paper_cm3.pdf.Google Scholar
  53. Sheppard, P. R., A. C. Comrie, G. D. Packin, K. Angersbach, and M. K. Hughes. 2002. The climate of the US Southwest. Climate Research 21:219–238.CrossRefGoogle Scholar
  54. Tebaldi, C., K. Hayhoe, and J. M. Arblaster. 2006. Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change 79:185–211.CrossRefGoogle Scholar
  55. Trenberth, K. E., P. D. Jones, P. Ambenje, R. Bojariu, D. R. Easterling, A. K. Tank, D. Parker, et al. 2007. Observations: Surface and atmospheric climate change. In Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, 235–336. Cambridge: Cambridge University Press.Google Scholar
  56. Wang, J., and X. Zhang. 2008. Downscaling and projection of winter extreme daily precipitation over North America. Journal of Climate 21:923–937.CrossRefGoogle Scholar
  57. Westerling, A. L., D. R. Cayan, T. J. Brown, B. L. Hall, and L. G. Riddle. 2004. Climate, Santa Ana winds and autumn wildfires in Southern California. Eos Transactions AGU 85:289, 296.Google Scholar
  58. Westerling, A. L., A. Gershunov, T. Brown, D. Cayan, and M. Dettinger. 2003. Climate and wildfire in the western United States. Bulletin of the American Meteorological Society 84:595–604.CrossRefGoogle Scholar

Copyright information

© Institute of the Environment 2013

Authors and Affiliations

  • Alexander Gershunov
    • 1
  • Balaji Rajagopalan
    • 2
  • Jonathan Overpeck
    • 3
  • Kristen Guirguis
    • 4
  • Dan Cayan
    • 4
  • Mimi Hughes
    • 5
  • Michael Dettinger
    • 6
  • Chris Castro
    • 3
  • Rachel E. Schwartz
    • 4
  • Michael Anderson
    • 7
  • Andrea J. Ray
    • 8
  • Joe Barsugli
    • 9
  • Tereza Cavazos
    • 10
  • Michael Alexander
    • 8
  • Francina Dominguez
    • 3
  1. 1.Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoUSA
  2. 2.University of ColoradoUSA
  3. 3.University of ArizonaUSA
  4. 4.Scripps Institution of OceanographyUSA
  5. 5.National Oceanographic and Atmospheric Administration [NOAA]USA
  6. 6.U.S. Geological SurveyUSA
  7. 7.California State Climate OfficeUSA
  8. 8.NOAAUSA
  9. 9.University of Colorado/Cooperative Institute for Research in Environmental SciencesUSA
  10. 10.Centro de Investigación Científica y de Educación Superior de EnsenadaUSA

Personalised recommendations