Skip to main content

Exploring the biology of energy and protein utilization in non-ruminant animals to improve nutrient utilization efficiencies

  • Chapter
Energy and protein metabolism and nutrition in sustainable animal production

Abstract

In this review, bioavailability of energy and amino acid, and the biological processes that contribute to nutrient utilization efficiency in non-ruminant animals are discussed. Key limitations of using digestible energy, metabolizable energy, net energy and standardized ileal amino acid digestibility values in diet formulation are highlighted. A modelling system based on nutrient flows is suggested to improve accuracy of representing energy utilization. In nutrient flow models dietary energy sources are characterized based on content and enzymatic digestibility or fermentability of energy yielding nutrients, while the use of nutrients for the various body functions is explicitly represented. In various species animal performance is sensitive to synchronized supply of nutrients; in these cases the dynamics of nutrient absorption should be considered. In regards to amino acid utilization, the effect of microbial fermentation in the upper gut and metabolic inefficiency associated endogenous gut amino acid losses remain to be quantified more accurately. Especially in heat treated ingredients some amino acids may be absorbed in a form that renders them unavailable for metabolism by the animal. Maintenance energy requirements contribute substantially to total energy requirements, and are best expressed as requirements at the cellular level in ATP equivalents. Between animal variability is a key determinant of inefficiency of nutrient use in groups of animals. Various approaches that may be pursued to improve efficiencies of using protein and other energy yielding nutrients are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Averous, J., A. Bruhat, S. Mordier and P. Fafournoux, 2003. Recent advances in the understanding of amino acid regulation of gene expression. J. Nutr. 133, 2040S-20445S.

    PubMed  CAS  Google Scholar 

  • Baldwin., R.L. 1995. Modeling Ruminant Digestion and Metabolism. Chapman & Hall, New York.

    Google Scholar 

  • Birkett, S. and K. de Lange, 2001a. Limitations of conventional models and a conceptual framework for a nutrient flow representation of energy utilization by animals. Brit. J. Nutr. 86, 647–659.

    Article  PubMed  CAS  Google Scholar 

  • Birkett, S. and K. de Lange, 2001b. Calibration of a nutrient flow model of energy utilization by growing pigs. Brit. J. Nutr. 86, 675–689.

    Article  PubMed  CAS  Google Scholar 

  • Black, J.L. 1995. Modelling energy metabolism in the pig. Pages 87–102 in P.J. Moughan, M.W.A. Verstegen and M. Visser-Reyneveld (Editors) Modelling growth in the pig. Wageningen Pers, Wageningen, The Netherlands.

    Google Scholar 

  • Boisen, S. and M.W.A. Verstegen, 1998. Evaluation of feedstuffs and pig diets. Energy or nutrient-based evaluation systems? II. Proposal for a new nutrient-based evaluation system. Acta Agric. Scand. 48, 95–102

    Google Scholar 

  • Bottje, W.G. and G.E. Carstens, 2009. Association of mitochondrial function and feed efficiency in poultry and livestock species. 87, E48-E63.

    CAS  Google Scholar 

  • Close, W.H., F. Berschauer and R. Heavens, 1982. The influence of protein:energy value of the ration and level of feed intake on the energy and nitrogen balance of the growing pig. Brit. J. Nutr. 49, 255–269.

    Article  Google Scholar 

  • Columbus, D. and C.F.M. de Lange, 2012. Evidence for validity of ileal digestibility coefficients in monogastrics. Brit J. Nutr. 108, 264–272.

    Article  Google Scholar 

  • CVB (Centraal Veevoeder Bureau), 2003. Veevoedertabel (Table of Feeding Value of Animal Feed Ingredients). Centraal Veevoeder Bureau, Lelystad, The Netherlands.

    Google Scholar 

  • De Lange, C.F.M. and S. H. Birkett, 2005. Characterization of the useful energy content in swine and poultry feed ingredients. Can. J. Anim. Sci. 85, 269–280.

    Article  Google Scholar 

  • De Lange, C.F.M., A.M. Gillis and G.J. Simpson, 2001. Influence of threonine intake on whole-body protein deposition and threonine utilization in growing pigs fed purified diets. J. Anim. Sci. 79, 3087–3095.

    PubMed  Google Scholar 

  • De Lange, C.F.M., J. van Milgen, J. Noblet, S. Dubois and S. Birkett, 2006. Previous feeding level influences plateau heat production following a 24 h fast in growing pigs. Brit. J. Nutr. 95, 1082–1087.

    Article  PubMed  Google Scholar 

  • De Lange, C.F.M., C. Levesque and B.J. Kerr, 2012. Amino acid nutrition and feed efficiency. Pages 81–90 in J.F. Patience (ed.). Feed efficiency in pigs. Wageningen Academic Press.

    Chapter  Google Scholar 

  • Emmans, G.C. 1994. Effective energy: A concept of energy utilization applied across species. Brit. J. Nutr. 71, 801–821.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, M.F. 2012. Determination of protein and amino acid digestibility in foods including implications of gut microbial amino acid synthesis. Brit. J. Nutr. 108, S238-S246.

    Article  PubMed  CAS  Google Scholar 

  • Garlick, P.J. 2004. The nature of human hazards associated with excessive intake of amino acids. J. Nutr. 134, 1633S-1639S.

    PubMed  CAS  Google Scholar 

  • Gilani, G.S., C. W. Xiao and K.A. Cockell, 2012. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein Quality. Brit. J. Nutr. 108, S315-332.

    Article  Google Scholar 

  • Gill, M., J. France, M. Summers, B. McBride and L. Milligan, 1989. Simulation of the energy costs associated with protein turnover and Na+/K + transport in growing lambs. J. Nutr. 119, 1287–1299.

    PubMed  CAS  Google Scholar 

  • Henry, Y., B. Seve, B. Colleaux, P. Ganier, C. Saligaut and P. Jégo, 1992. Interactive effects of dietary levels of tryptophan and protein on voluntary feed intake and growth performance in pigs, in relation to plasma free amino acid and hypothalamic serotonin. J. Anim Sci. 70, 1873–1887.

    PubMed  CAS  Google Scholar 

  • Ježek, P, M., žáćcková, M. Růžićka, E. Śkobisová and M. Jabůrek, 2004. Mitochondrial uncoupling proteins - Facts and fantasies Phys. Res. 53, S199-S211.

    Google Scholar 

  • Jonker, R., M.P K.J. Engelen and N.E.P. Deutz, 2012. Role of specific dietary amino acids in clinical conditions. Brit. J. Nutr. 108, S139-S148.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, B.W., J.H. van der Werf and T.H. Meuwissen, 1993. Genetic and statistical properties of residual feed intake. J. Anim. Sci. 71, 3239–3250.

    PubMed  CAS  Google Scholar 

  • Kielanowski, J. 1971. Energy requirements of the growing pig. In Pig Production, Pages 183–201 in D.J.A. Cole (Editors) Proceedings of the Eighteenth Easter School in Agricultural Science, Nottingham, 1971. Penn State University Press, University Park, PA.

    Google Scholar 

  • Kim, Y.S. and R.D. Sainz, 1992. Beta adrenergic agonists and hypertrophy of skeletal muscle. Life Sci. 50, 3970407.

    Article  Google Scholar 

  • Koong, L-J, J. Nienaber, J. Pekas and J-T. Yen, 1982. Effects of plane of nutrition on organ size and fasting heat production in pigs. J. Nutr. 112, 1638–1642.

    PubMed  CAS  Google Scholar 

  • Kyriazakis, I. (Editor) 1999. Quantitative Biology of the Pig, I. Kyriazakis, ed. Wallingford, UK: CAB International, Wallingford, Oxon, UK.

    Google Scholar 

  • Kyriazakis, I., D. Dotas and G. Emmans, 1993. The effect of breed on the relationship between feed composition and the efficiency of protein utilization in pigs. Brit. J. Nutr. 71, 849–859.

    Article  Google Scholar 

  • Labussiere E., J. van Milgen J., C. de Lange and J. Noblet, 2011. Maintenance energy requirements of growing pigs and calves are influenced by feeding level. J. Nutr. 141, 1855–1861.

    Article  PubMed  CAS  Google Scholar 

  • Langer, S., P.W.D. Scislowski, D.S. Brown, P. Dewey and M.F. Fuller, 2000. Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: effects on plasma amino- and keto-acid concentrations and branched-chain keto-acid dehydrogenase activity. Brit. J. Nutr. 83, 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Lefaucheur, L., B. Lebret, P. Ecolan, I. Louveau, M. Damon, A. Prunier, Y. Billon, P. Sellier and H. Gilbert, 2011. Muscle characteristics and meat quality traits are affected by divergent selection on residual feed intake in pigs. J. Animal Sci 89, 996–1010.

    Article  CAS  Google Scholar 

  • Le Floc'h, N., L. Lebellego, J.J. Matte, D. Melchior and B. Sève, 2009. The effect of sanitary status degradation and dietary tryptophan content on growth rate and tryptophan metabolism in weaning pigs. J. Anim. Sci. 87, 1686–1694.

    Article  PubMed  Google Scholar 

  • Libao-Mercado, A.J., S. Leeson, S. Langer, B.J. Marty and C.F.M de Lange, 2006. Efficiency of utilizing ileal digestible lysine and threonine for whole body protein deposition in growing pigs is reduced when dietary casein is replaced by wheat shorts. J. Anim. Sci. 84, 1362–1374.

    PubMed  CAS  Google Scholar 

  • Locatelli, M.L., V. Ravindran and A. Lemme, 2004. Standardized ileal amino acid digestibility in broiler nutrition. J. Anm. Sci. 82 (Suppl. 1), 433–433

    Google Scholar 

  • Machiels, M.A.M. and A.M. Henken, 1986. A dynamic simulation model for growth of the African Catfish, Clarias gariepinus (Burchell 1822). I. Effect of feeding level on growth and energy metabolism. Aquaculture 56, 29–52.

    CAS  Google Scholar 

  • Milligan, L. and M. Summers. 1986 The biological basis of maintenance and its relevance to assessing responses to nutrients. Proc. Nutr. Soc. 45, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Morel, P.C.H., G.R. Wood and D. Sirisatien, 2008. Effect of genotype, population size and genotype variation on optimal diet determination for growing pigs. Acta Horticulturae 802, 287–292.

    Google Scholar 

  • Moughan, P.J. 1999. Protein metabolism in the growing pig. Pages 299–331 In I. Kyriazakis (Editor) Quantitative Biology of the Pig. CAB International, Wallingford, Oxon, UK.

    Google Scholar 

  • Moughan, P. J., M.W.A. Verstegen and M. Visser-Reyneveld (Editors), 2000. Feed evaluation - principles and practice. Wageningen Pers, Wageningen, The Netherlands.

    Google Scholar 

  • Moughan, P.J. (Editor). 2012. Dietary protein for human health. 2012. Br. J. Nutr. 108, S1-S336.

    Google Scholar 

  • NRC (National Research Council), 1987. Predicting feed intake of food producing animals. The National Academies Press, Washington, DC.

    Google Scholar 

  • NRC (National Research Council), 1994 Nutrient requirements of poultry. The National Academies Press, Washington, DC.

    Google Scholar 

  • NRC (National Research Council), 2010. Toward sustainable agricultural systems in the 21st century. The National Academies Press, Washington, DC.

    Google Scholar 

  • NRC (National Research Council), 2011. Nutrient requirements of fish and shrimp. The National Academies Press, Washington, DC.

    Google Scholar 

  • NRC (National Research Council), 2012. Nutrient requirements of swine. The National Academies Press, Washington, DC.

    Google Scholar 

  • Noblet, J., C. Karege, S. Dubois and J van Milgen, 1999. Metabolic utilization of energy and maintenance requirements in growing pigs: effect of sex and genotype. J. Anim. Sci. 77, 1208–1216.

    PubMed  CAS  Google Scholar 

  • Noblet, J., X.S. Shi and S. Dubois, 1993. Metabolic utilization of dietary energy and nutrients for maintenance energy requirements in sows: basis for a net energy system. Brit. J. Nutr. 70, 407–419.

    Article  PubMed  CAS  Google Scholar 

  • Noblet J. and J. van Milgen, 2004. Energy value of pig feeds: Effect of pig body weight and energy evaluation system. J. Anim. Sci. 82 (E. Suppl.), E229-E238.

    PubMed  Google Scholar 

  • Ojano-Dirain, C. P., M. Iqbal, D. Cawthon, S. Swonger, T. Wing, M. Cooper and W. Bottje, 2004. Determination of mitochondrial function in broilers with low and high feed efficiency. Poultry Sci. 83, 1394–1403.

    CAS  Google Scholar 

  • Peganova, S. and K. Eder. 2003. Interactions of various supplies of isoleucine, valine, leucine and tryptophan on the performance of laying hens. Poultry Sci. 82, 100–105.

    CAS  Google Scholar 

  • Perez-Laspiur, J., J. L. Burton, P. S. D. Weber, J. Moore, R. N. Kirkwood and N. L. Trottier, 2009. Dietary protein intake and stage of lactation differentially modulate amino acid transporter mRNS abundance in porcine mammary tissue. J. Nutr. 139, 1677–1684.

    Article  Google Scholar 

  • Pettigrew, J.E., M. Gill, J. France and W.H. Close. 1992. A mathematical integration of energy and amino acid metabolism of lactating sows. J. Anim. Sci. 70, 3742–3761

    PubMed  CAS  Google Scholar 

  • Pirgozliev, V. and S.P. Rose, 1999. Net energy systems for poultry feeds: A quantitative review. World's Poultry Sci. J. 55, 23–36.

    Article  Google Scholar 

  • Pomar, C., I. Kyriazakis, G.C. Emmans, and P. W. Knap, 2003. Modeling stochasticity: Dealing with populations rather than individual pigs. J. Anim Sci. 81, E178-186E.

    Google Scholar 

  • Rakhshandeh, A., and C.F.M. de Lange, 2011. Immune system stimulation in the pig. Pages 31–46 in R.J. van Barneveld (Editor) Manipulating pig production XIII. Australasian Pig Science Association Inc. Werribee, Victoria, Australia.

    Google Scholar 

  • Richard, M.P., R.W. Rosebrough, C.N. Coon and J.P. McMurtry, 2010. Feed intake regulation for the female broiler breeder: In theory and in practice. Poultry Sci. 19, 182–193.

    Google Scholar 

  • Rivera-Ferre, M. G.; J.F. Aguilera, J.F. and R. Nieto, 2006. Differences in whole-body protein turnover between Iberian and Landrace pigs fed adequate or lysine-deficient diets. J. Anim. Sci. 84, 3346–3355.

    Article  PubMed  CAS  Google Scholar 

  • Rutherfurd, S.M. and P.J. Moughan, 2012. Available versus digestible dietary amino acids. Brit. J. Nutrition. 108, S306-S314.

    Article  Google Scholar 

  • Stein, H., M. Fuller, P.J. Moughan, B. Seve and C.F.M. de Lange, 2007. Amino acid availability and digestibility in pig feed ingredients: Terminology and application. J. Anim. Sci. 85, 172–180.

    Article  PubMed  CAS  Google Scholar 

  • Sun, P, D. Li, B. Dong, S. Qiao, and X. Ma, 2008. Effects of soybean glycinin on performance and immune function in early weaned pigs. Arch. Anim. Nutr. 62:313–21.

    Article  PubMed  CAS  Google Scholar 

  • Tamminga, S., H. Schulze, J. van Bruchem and J. Huisman, 1995. The nutritional significance of endogenous N-losses along the gastro-intestinal tract of farm animals. Arch. Anim. Nutr. 48, 9–22.

    CAS  Google Scholar 

  • Torrallardona, D. and E. Roura (Editors), 2009. Voluntary feed intake in pigs. Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Van den Borne, J.J.G.C., J.W. Schrama,.J.W. Heetkamp, M.W.A. Verstegen and W.J.J. Gerrits, 2006. Synchronizing the availability of amino acids and glucose decreases fat retention in heavy pre-ruminant calves. J. Nutr. 136, 2181–2187.

    PubMed  Google Scholar 

  • Van den Borne, J.J.G.C., J.W. Schrama, J.W. Heetkamp, M.W.A. Verstegen and W.J.J. Gerrits, 2007. Synchronizing the availability of amino acids and glucose increases protein retention in pigs. Animal 1, 666–674.

    Article  PubMed  Google Scholar 

  • Van Milgen, J. 2002. Modelling biochemical aspects of energy metabolism in mammals. J. Nutr. 132, 2154–2162.

    Google Scholar 

  • Van Milgen, J., Bernier, J.F., Lecozler, Y., Dubois, S. and J. Noblet, 1998. Major determinants of fasting heat production and energetic cost of activity in growing pigs of different body weight and breed/castration combination. Brit. J. Nutr. 79, 1–9.

    Article  Google Scholar 

  • Van Milgen, J., J. Noblet and S. Dubois, 2001. Energetic efficiency of starch, protein and lipid utilization in growing pigs. J. Nutr. 131, 1309–1318.

    PubMed  Google Scholar 

  • Van Milgen, J., J. Noblet, A. Valancogne, S. Dubois and J.Y. Dourmad, 2008. InraPorc: a model and decision support tool for the nutrition of growing pigs. Anim. Feed Sci. and Techn. 143, 387–405.

    Article  Google Scholar 

  • Westerterp-Plantenga, M.S., S.G. Lemmens and K.R. Westerterp, 2012 Dietary protein - its role in satiety, energetics weight loss and health. Brit. J. Nutr. 108, S-105-112.

    Article  CAS  Google Scholar 

  • Weurding, R. E., H. Enting and M.W.A. Verstegen, 2003. The effect of site of starch digestion on performance of broiler chickens. Anim. Feed Sci. Techn. 110, 175–184.

    Article  CAS  Google Scholar 

  • Weis, R.N., S.H. Birkett, P.C.H. Morel and C.F.M. de Lange, 2004. Independent effects of energy intake and body weight on physical and chemical body composition in growing entire male pigs. J. Anim. Sci. 82, 109–121.

    PubMed  CAS  Google Scholar 

  • Williams, N.H., T.S. Stahly and D. R. Zimmerman, 1997. Effect of chronic immune system activation on the rate, efficiency, and composition of growth and lysine needs of pigs fed from 6 to 27 kg. J. Anim. Sci. 75, 2463–2471.

    PubMed  CAS  Google Scholar 

  • Yáñez, J.L., E. Beltranena, M. Cervantes and R.T. Zijlstra, 2011. Effect of phytase and xylanase supplementation or particle size on nutrient digestibility of diets containing distillers dried grains with solubles cofermented from wheat and corn in ileal-cannulated grower pigs. J. Anim. Sci. 89, 113–123.

    Article  PubMed  CAS  Google Scholar 

  • Yen, T.J. 1997. Oxygen consumption and energy flux of porcine splanchnic tissues. Pages 260–273 in J.P. Laplace, C. Fevrier and A. Barbeau. (Editors). Digestive Physiology in pigs. EAAP Publication no. 88. INRA, France.

    Google Scholar 

  • Young, J.M. and J.C.M. Dekkers, 2012. The genetic and biological basis of residual feed intake as a measure of feed efficiency. Pages 153–160 in J.F. Patience (Editor) Feed efficiency in Swine. Wageningen Academic Publishers, Wageningen, The Netherlands.

    Chapter  Google Scholar 

  • Zhu, C.L., M. Rademacher and C.F.M. de Lange, 2005. Increasing dietary pectin level reduces utilization of digestible threonine intake, but not lysine intake, for body protein deposition in growing pigs. J. Anim. Sci. 83, 1044–1053.

    PubMed  CAS  Google Scholar 

  • Zijlstra, R.T., R. Jha, A.D. Woodward, J. Fouhse and T.A.T.G. van Kempen, 2012. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs. J. Anim. Sci. 2012, 90 (Suppl. 4), 49–58.

    Article  PubMed  Google Scholar 

  • Zijlstra, R.T., A. Owusi-Asiedu and P.H. Simmins, 2010. Future of NSP-degrading enzymes to improve nutrient utilization of co-products and gut health in pigs. Livest. Sci. 134, 255–257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. M. de Lange .

Editor information

James W. Oltjen Ermias Kebreab Hélène Lapierre

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Wageningen Academic Publishers The Netherlands

About this chapter

Cite this chapter

de Lange, C.F.M., Levesque, C.L., Martínez-Ramírez, H.R. (2013). Exploring the biology of energy and protein utilization in non-ruminant animals to improve nutrient utilization efficiencies. In: Oltjen, J.W., Kebreab, E., Lapierre, H. (eds) Energy and protein metabolism and nutrition in sustainable animal production. Energy and protein metabolism and nutrition in sustainable animal production, vol 134. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-781-3_42

Download citation

Publish with us

Policies and ethics