Arnold, T.B. and Emerson, J.W. 2011. Nonparametric Goodness-of-Fit Tests for Discrete Null Distributions. The R Journal 3 34–39.
Google Scholar
Conover, W.J. 1972. A Kolmogorov Goodness-of-Fit Test for Discontinuous Distributions. Journal of American Statistical Association 67 591–596.
CrossRef
Google Scholar
Cosby, A., Trotter, M., Lamb D., Falzon G., Stanley J., Powell, K. and Bruce, R. 2012. Detection of pasture pests using proximal PA sensors: a preliminary study investigating the relationship between EM38, NDVI, elevation and redheaded cockchafer in the Gippsland region. In: (Ed.) I. Yunusa, Capturing Opportunities and Overcoming Obstacles in Australian Agronomy, Proceedings of 16th Australian Agronomy Conference. Online Community Publishing.
Google Scholar
Dixon, W.J. 1950. Analysis of extreme values. Journal of Annals of Mathematical Statistics21 488–506.
Google Scholar
Douglas, M.H. 1972. Red-headed cockchafers can be controlled by pasture management. Victorian Journal of Agriculture 70 61–63.
Google Scholar
Flynn, E.S., Dougherty C.T. and Wendroth, O. 2008. Assessment of pasture biomass with normalised difference vegetation index from active ground-based sensors. Agronomy Journal 100 114–121.
CrossRef
Google Scholar
Geonics Limited, 2003. EM38-Ground Conductivity Meter Operating Manual. Geonics Limited, Mississauga, Ontario, Canada.
Google Scholar
Gleser, L.J. 1985. Exact Power of Goodness-of-Fit Tests of Kolmogorov Type for Discontinuous Distributions. Journal of American Statistical Association 80 954–958.
CrossRef
Google Scholar
Hardy, R. and Tandy M. 1971. Redheaded pasture cockchafer. Tasmanian Journal of Agriculture 42 263–267.
Google Scholar
Hastie, T. 2011. gam: Generalized Additive Models. R package version 1.06.2. http://CRAN.R-project.org/package=gam.
Google Scholar
Holland, K.H., Schepers, J.S., Schanahan, J.F, Horst, G.L., 2004. Plant canopy sensor with modulated polychromatic light source. In: (Ed.) D.J. Mulla, Proceedings of the 7th International Conference on Precision Agriculture and other Precision Resources Management. Precision Agriculture Centre, Minneapolis, MN, USA. CD-ROM.
Google Scholar
Holland K.H., Lamb D.W. and Schepers J.S. 2012. Radiometry of proximal active optical sensors (AOS) for agricultural sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 1–10.
CrossRef
Google Scholar
Hossain, M.B., Lamb, D.W., Lockwood, P.V. and Frazier, P. 2010. EM38 for volumetric soil water content estimation in the root zone of deep vertisol soils. Computers and Electronics in Agriculture 74 100–109.
CrossRef
Google Scholar
Komsta, L. 2011. Outliers: Tests for outliers. R package version 0.14. http://CRAN.R-project.org/package=outliers.
Google Scholar
JMP, Version 9. SAS Institute Inc., Cary, NC, USA. 1989–2007.
Google Scholar
Matthews, E.G. 1984. A Guide to the Genera of Beetles of South Australia Part 3 Polyphaga: Eucinetoidea, Dascilloidea and Scarabaeoidea. South Australian Museum, Adelaide.
Google Scholar
McNeill, J.D., 1980. Electrical Conductivity of Soils and Rocks. In: Technical Note TN-5. Geonics Limited, Mississauga, Ontario, Canada.
Google Scholar
McQuillan, P.B. and Webb, W.R. 1994. Selective soil organic matter consumption by larvae of Adoryphorus couloni (Burmeister) (Coleoptera: Scarabaeidae). Journal of the Australian Entomological Society 29 75–79.
CrossRef
Google Scholar
Mickan, F. 2008. The Redheaded Pasture Cockchafer, Department of Primary Industries, Melbourne, Victoria, Australia, Agnote 1358.
Google Scholar
Pinheiro, J., Bates. D., DebRoy, S., Sarkar, D. and the R Development Core Team. 2012. nlme: Linear and Nonlinear Mixed Effects Models. R package 3 1–104.
Google Scholar
Plant, R.E. 2001. Site specific management: the application of information technology to crop production. Computers and Electronics in Agriculture 30 9–29.
CrossRef
Google Scholar
R Development Core Team, 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. www.R-project.org/.
Google Scholar
Rath, A.C. and Pearn, S.G. 1993. Development of economic control of the root-feeding cockchafer, Adoryphorus couloni (Coleoptera: Scarabaeidae) with the fungus Metarhizium anisopliae. In: (Ed.) E.S. Delfosse, Pests of Pastures. Weed, Invertebrate and Disease Pests of Australian Sheep Pastures, (CSIRO Information Services: Melbourne) pp. 332–336.
Google Scholar
Rorabacher, D.B. 1991. Statistical Treatment for Rejection of Deviant Values: Critical Values of Dixon Q Parameter and Related Subrange Ratios at the 95 percent Confidence Level. Journal of Analytical Chemistry 83 139–146.
Google Scholar
Rouse, J.W., Haas, J.R., Schell, J.A. and Deering, D.W. 1974. Monitoring vegetation systems in the Great Plains with ERTS. In: (Eds.) Freden, S., Mercanti, E., Becker, M., Third Earth Resources Technology Satellite- 1 Symposium. NASA US Government Printing Office: Washington, DC, pp. 309–317.
Google Scholar
Serrano, J.M., Peca, J.O., Marques da Silva, J.R. and Shaidian, S. 2010. Mapping soil and pasture variability with an electromagnetic induction sensor. Computer and Electronics in Agriculture 73 7–16.
CrossRef
Google Scholar
Trotter M.G., Lamb D.W., Donald G.E. and Schneider D.A. 2010. Evaluating an active optical sensor for quantifying and mapping green herbage mass and growth in a perennial grass pasture. Crop and Pasture Science 61 389–398.
CrossRef
Google Scholar
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0.
CrossRef
Google Scholar