Spatial variability of seed depth placement of maize under no tillage in Alentejo, Portugal

Conference paper


Among the various factors that contribute towards producing a successful maize crop, seed depth placement is a key determinant, especially in a no-tillage system. The main objective of this work was to evaluate the spatial variability of seed depth placement and crop establishment in a maize crop under no-tillage conditions, using precision farming technologies. The obtained results indicate that seed depth placement was significantly affected by soil moisture content, while a very high coefficient of variation of 39% was found for seed depth. Seeding depth had a significant impact on mean emergence time and percentage of emerged plants. Shallow average depth values and the high coefficient of variation suggest a need for improvement in controlling the seeder sowing depth.


maps maize no-tillage seeding depth sensing 



The authors acknowledge the permission given by Pedro Vacas de Carvalho, owner of the farm where the trial was carried out and Area400 ( for remote sensing services.


  1. Abrecht, D.G., 1989. No till crop establishment on red earth soils at Katherine, Northern Territory: effect of sowing depth and firming wheel pressure on the establishment of cowpea, mung bean, soybean and maize. Australian Journal of Experimental Agriculture 29 (3) 397–402.CrossRefGoogle Scholar
  2. Basso, B., Sartori, L., Bertocco, M., Cammarano, D., Martin, E., Grace, P., 2011. Economic and environmental evaluation of site-specific tillage in a maize crop in NE Italy. European Journal of Agronomy 35 (2011) 83–82.CrossRefGoogle Scholar
  3. Bilbro, J.D., Wanjura, D.F., 1982. Soil crusts and cotton emergence relationships. Transactions of ASAE 25 (4) 1484–1487.Google Scholar
  4. Carvalho,M., Basch, G., 1999. Efficient use of water in the southern region of Portugal: agronomic aspects. Agricultural Water Management 40 275–281.CrossRefGoogle Scholar
  5. Conceição, L.A., Elorza, P.B., Freixial, R., Dias, S., Garrido, M., Valero, C., 2012. Proceedings of the International Conference of Agricultural Engineering, CIGR Ag-Eng 2012, Valencia, Spain.Google Scholar
  6. Fancelli, A.L. 2000. Crop physiology and basic aspects of management for high yield. In: (Eds.) Santini, I., Fancelli, A.L. Maize crop: management strategies for the south region. Guarapuava: Fundação Agrária de Pesquisa Agro-Pecuaria, 2000, 103–106.Google Scholar
  7. FAO Agriculture and Consumer Protection Department. 2013. Conservation Agriculture. Available at: Scholar
  8. Garcia, I.R., Aday, O., Sanchez, M. 1999. Comparison of soil resistance to penetration and soil moisture content of a natural and modified Cambisol. Farmer Center no.3: 57–61.Google Scholar
  9. Garden, W.H. 1986. Water content. In: (Eds.) Klute, A., Campbell, G.S., Jackson, R.D., Mortland, M.M., Nielsen, D.R., Methods of Soil Analyses. Part.1. Physical, Mineralogical Methods. American Society of Agronomy, Madison, WI, USA, ISBN 0-89118-088-5 pp. 493–541.Google Scholar
  10. Govaerts, B., Sayre, K.D., Goudeseune, B., De Corte, P., Lichter,K. 2009. Conservation agriculture as a sustainable option for the central Mexican highlands. Soil & Tillage Research 103 222–230.CrossRefGoogle Scholar
  11. INE Instituto Nacional de Estatística, 2011. Censos agrícolas – principais resultados 2009 (Census of Agriculture – main results 2009). Lisboa, Portugal. Instituto Nacional de Estatística, I.P.Google Scholar
  12. Karayel, D., Ozmerzi, A., 2008. Evaluation of three depth-control components on seed placement accuracy and emergence for a precision planter. Applied Engineeriong in Agriculture 24 (3) 271–276.Google Scholar
  13. Liu,W.; Tollenar, M.; Stewart, G., Deen, W. 2004. Response of Corn Grain Yield to Spatial and Temporal Variability in Emergence. Crop Science 44 (3) 847–854.CrossRefGoogle Scholar
  14. Meyer, G.E., T.W. Hindman and K. Lakshmi, 1999. Machine vision detection parameters for plant species identification. In: (Eds.) G.E. Meyer and J.A. DeShazer, Precision Agriculture and Biological Quality. Proceedings of SPIE, Bellingham, WA 3543:327–335.CrossRefGoogle Scholar
  15. Neto, P.H.W., Schimandeiro, A., Gimenez, L.M., Colet, M.J., Garbuio, P.W. 2007. Profundidade da deposição de semente de milho na região dos Campos Gerais, Paraná. (Seed depth placement of a maize crop in the region of Campos Gerais, Paraná). Engenharia Agrícola 27 (3) 782–786.CrossRefGoogle Scholar
  16. Özmerzi, A., Karayel, D., Topacki, M., 2002. Effect of sowing depth on precision seeder uniformity. Biosystems Engineering 82 (2) 227–230.CrossRefGoogle Scholar
  17. Sá, J.C.M., 2004. Adubação fosfatada no sistema de plantio direto. (Phosphorus fertilization in no-tillage system). In: Proceedings of the Conference on Phosphorus in Brazilian Agriculture. Anais (ed.). 201–220.Google Scholar
  18. Tabatabaeefar, A., Emamzadeh, H., Varnamkhasti, M.G., Rahimizadeh, R., Karimi, M., 2009. Comparison of energy of tillage systems in wheat production. Energy 34 41–45.CrossRefGoogle Scholar
  19. Tolon-Becerra, A., Tourn, M., Botta, G.F., Lastra-Bravo, X., 2011. Effects of different tillage regimes on soil compaction, maize (Zea mays L.) seedling emergence and yields in the eastern Argentinean Pampas region. Soil & Tillage Research 117 184–190.CrossRefGoogle Scholar

Copyright information

© Wageningen Academic Publishers The Netherlands 2013

Authors and Affiliations

  1. 1.Instituto Politécnico de Portalegre, ESAEElvasPortugal
  2. 2.Physical Properties Laboratory (LPF-Tagralia)Universidad Politécnica de MadridMadridSpain

Personalised recommendations