Skip to main content

Portability of leaf chlorophyll empirical estimators obtained at Sentinel-2 spectral resolution

  • Conference paper
Precision agriculture ’13
  • 3822 Accesses

Abstract

The present work addresses the comparison of the sensitivity of leaf chlorophyll estimators vegetation indices (VI), obtainable from Sentinel-2 (S2) spectral bands, in the 1-4 LAI range and of their portability with different crops/soil/illumination conditions. The comparison is addressed by the analysis of a large PROSPECT-SAILH synthetic dataset. Results indicate that the TCI/OSAVI (Triangular Chlorophyll index / Optimized Soil Adjusted Vegetation Index ratio) and MTCI (MERIS Terrestrial Chlorophyll Index), obtainable at 20 m spatial resolution from future S2 data, are the best leaf chlorophyll estimators. The TCI/OSAVI ratio is the best estimator for erectophile crop canopies whereas for planophile canopies the TCI/OSAVI ratio or the MTCI index are the best estimators depending on modelled leaf structure. The CVI (chlorophyll vegetation index), obtainable at 10 m, is the second best estimator for both planophile and erectophile crops canopies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacour, C., Jacquemoud, S., Leroy, M., Hautecoeur, O., Weiss, M., Prévot, L., Bruguier, L. and Chauki, H. 2002. Reliability of the estimation of vegetation characteristics by inversion of three canopy reflectance models on airborne POLDER data. Agronomie: Agriculture and Environment 22(6) 555–565.

    Article  Google Scholar 

  • Baret, F, Houles, V. and Gue, M. 2007. Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. Journal of Experimental Botany 58(4) 869–880.

    Article  PubMed  CAS  Google Scholar 

  • Dash, J. and Curran, P.J. 2001. The MERIS terrestrial chlorophyll index. International Journal Remote Sensing 25(23) 5403–5413.

    Article  Google Scholar 

  • Daughtry, C. S. T., McMurtrey, J. E. III, Kim, M. S. and Chappelle, E.W. 1997. Estimating crop residue cover by blue fluorescence imaging. Remote Sensing of the Environment 60(1) 14–21.

    Article  Google Scholar 

  • Daughtry, C.S.T., Walthall, C.L., Kim, M.S., Brown de Colstoun, E. and McMurtrey III, J.E. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment 74(2) 229–239.

    Article  Google Scholar 

  • Gitelson, A.A., Kaufman, J.Y. and Merzlyac, M. N. 1996. Use of a Green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58(3) 289–298.

    Article  Google Scholar 

  • Gitelson, A. A., Vina, A., Ciganda, V., Rundquist, D.C. and Arkebauer, T.J. 2005. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters 32(8) L08 403.1–L08 403.4.

    Article  Google Scholar 

  • Haboudane, D., Tremblay, N., Miller, J. and Vigneault, P. 2008. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Transactions Geoscience Remote Sensing 46(2) 423–437.

    Article  Google Scholar 

  • Jacquemoud, S., Baret, F., Andrieu, B., Danson, M. and Jaggard, K. 1995. Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sensing of Environment 52(3) 163–172.

    Article  Google Scholar 

  • Samborski, S.M., Tremblay N. and Fallon, E. 2009. Strategies to Make Use of Plant Sensors-Based Diagnostic Information for Nitrogen Recommendations. Agronomy Journal 101(4) 800–816.

    Article  CAS  Google Scholar 

  • Solari, F., Shanahan, J.F., Ferguson, R.B. and Adamchuk V.I. 2010. An Active Sensor Algorithm for Corn Nitrogen Recommendations Based on a Chlorophyll Meter Algorithm. Agronomy Journal 102(4) 1090–1098.

    Article  Google Scholar 

  • Vincini M., Frazzi, E. and D’Alessio, P. 2008. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture 9(5) 303–319.

    Article  Google Scholar 

  • Vincini M. and Frazzi, E. 2011. Comparing narrow and broad-band vegetation indices to estimate leaf chlorophyll content in planophile crop canopies. Precision Agriculture 12(3) 334–344.

    Article  Google Scholar 

  • Vincini, M., Amaducci, S. and Frazzi, E. 2012. Sensitivity of Sentinel-2 Red-Edge Bands to Leaf Chlorophyll Concentration in Winter Wheat. In: Proceedings of 1st Sentinel-2 Preparatory Symposium, ESA-ESRIN, ESA Special Publication SP-707, ESA Communications, ESTEC, Noordwijk, the Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vincini .

Editor information

John V. Stafford

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Wageningen Academic Publishers The Netherlands

About this paper

Cite this paper

Vincini, M., Frazzi, E. (2013). Portability of leaf chlorophyll empirical estimators obtained at Sentinel-2 spectral resolution. In: Stafford, J.V. (eds) Precision agriculture ’13. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-778-3_17

Download citation

Publish with us

Policies and ethics