Skip to main content

The genetic and biological basis of residual feed intake as a measure of feed efficiency

  • Chapter

Abstract

Feed efficiency traditionally has been evaluated either using a feed to gain ratio or a gain to feed ratio. Starting in 1963 with Koch, a new manner of looking at feed efficiency came into play and has become increasingly important. Koch adjusted feed consumed for gain and mid-weight in order to evaluate residual feed intake (RFI) of individual animals. Animals with a more negative residual feed intake are more efficient. Many studies have been performed in order to get a better understanding of the biological basis behind RFI. Studies have been conducted to compare animals differing in RFI to evaluate differences in traits such as total feed intake, growth and other performance traits, meat quality, behavior, and digestibility. At Iowa State University, two selection lines of pigs have been developed which differ in RFI as a resource population to study the biological and physiological basis of feed intake and efficiency. The purpose of this chapter is to summarize the main findings from this selection experiment in terms of the genetic and biological basis of RFI in growing pigs. RFI was found to be moderately heritable (0.29 ± 0.07) and responded well to selection. Selection for decreased RFI resulted in pigs that ate less, are leaner, grow slower, eat faster, have lower maintenance requirements, and have better gut integrity. No detrimental effects were found for meat quality, litter size, litter performance, or response to PRRS infection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam, I., B. A. Young, A. M. Nicol, and A. A. Degan. 1984. Energy cost of eating in cattle given diets of different form. Anim. Prod. 38:53–56.

    Article  Google Scholar 

  • Arthur, P. F., J. A. Archer, D. J. Johnston, R. M. Herd, E. C. Richardson, and P. F. Parnell. 2001. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J. Anim. Sci. 79:2805–2811.

    PubMed  CAS  Google Scholar 

  • Baker, S. D., J. I. Szasz, T. A. Klein, P. S. Kuber, C. W. Hunt, J. B. Glaze, Jr., D. Falk, R. Richard, J. C. Miller, R. A. Battaglia, and R. A. Hill. 2006. Residual feed intake of purebred Angus steers: Effects on meat quality and palatability. J. Anim. Sci. 84:938–945.

    Article  PubMed  CAS  Google Scholar 

  • Barea, R., S. Dubois, H. Gilbert, P. Sellier, J. van Milgen, and J. Noblet. 2010. Energy utilization in pigs selected for high and low residual feed intake. J. Anim. Sci. 88:2062–2072.

    Article  PubMed  CAS  Google Scholar 

  • Boddicker, N., N. K. Gabler, M. E. Spurlock, D. Nettleton, and J. C. M. Dekkers. 2011. Effects of ad libitum and restricted feed intake on growth performance and body composition of Yorkshire pigs selected for reduced residual feed intake. J. Anim. Sci. 89:40–51.

    Article  PubMed  CAS  Google Scholar 

  • Boddicker, N. J., D. J. Garrick, J. M. Reecy, R. R. R. Rowland, J. K. Lunney, and J. C. M. Dekkers. 2012. Genetic architecture of response to experimental porcine reproductive and respiratory syndrome virus infection. Midwest American Society of Animal Science-American Dairy Science Association Joint Meetings, Abstract #58.

    Google Scholar 

  • Braastad, B. O., and J. Katle. 1989. Behavioural differences between laying hen populations selected for high and low efficiency of food utilisation. Br. Poult. Sci. 30:533–544.

    Article  PubMed  CAS  Google Scholar 

  • Bunter, K. L., S. Hermesch, B. G. Luxford, H.-U. Graser, and R. E. Crump. 2005. Insulin-like growth factor-I in juvenile pigs is genetically correlated with economically important performance traits. Aust. J. Exp. Agric. 45:783–792.

    Article  CAS  Google Scholar 

  • Bunter, K. L., W. Cai, D. J. Johnston, and J. C. M. Dekkers. 2010. Selection to reduce residual feed intake in pigs produces a correlated response in juvenile insulin-like growth factor-I concentration. J. Anim. Sci. 88:1973–1981.

    Article  PubMed  CAS  Google Scholar 

  • Cai, W., D. S. Casey, and J. C. M. Dekkers. 2008. Selection response and genetic parameters for residual feed intake in Yorkshire swine. J. Anim. Sci. 86:287–298.

    Article  PubMed  CAS  Google Scholar 

  • Cai, W., M. S. Kaiser, and J. C. M. Dekkers. 2009. Genetic analysis of longitudinal measurements of performance traits in selection lines for residual feed intake in Yorkshire swine. J. Anim. Sci. 89:1270–1280.

    Article  Google Scholar 

  • Casey, D. S., H. S. Stern, and J. C. M. Dekkers. 2005. Identifying errors and factors associated with errors in data from electronic swine feeders. J. Anim. Sci. 83:969–982.

    PubMed  CAS  Google Scholar 

  • Dekkers, J. C. M., and H. Gilbert. 2010. Genetic and biological aspect of residual feed intake in pigs. Proc. 9th WCGALP. Paper # 287.

    Google Scholar 

  • De Haer, L. C. M., P. Luiting, and H. L. M. Aarts. 1993. Relations among individual (residual) feed intake, growth performance and feed intake pattern of growing pigs in group housing. Livest. Prod. Sci. 36:233–253.

    Article  Google Scholar 

  • Durunna, O. N., Z. Wang, J. A. Basarab, E. K. Okine, and S. S. Moore. 2011. Phenotypic and genetic relationships among feeding behavior traits, feed intake, and residual feed intake in steers fed grower and finisher diets. J. Anim. Sci. 89:3401–3409.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, H., J.-P. Bidanel, Y. Billon, H. Lagant, P. Guillouet, P. Sellier, J. Noblet, and S. Hermesch. 2011. Correlated responses in sow appetite, residual feed intake, body composition and reproduction after divergent selection for residual feed intake in the growing pig. J. Anim. Sci. Online publication.

    Google Scholar 

  • Gorbach, D., W. Cai, J. Dekkers, J. Young, D. Garrick, R. Fernando, and M. Rothschild. 2010. Large-scale SNP association analyses of residual feed intake and its component traits in pigs. Proc. 9th WCGALP. Paper # 265.

    Google Scholar 

  • Herd, R. M., and S. C. Bishop. 2000. Genetic variation in residual feed intake and its association with other production traits in British Hereford cattle. Livest. Prod. Sci. 63:111–119.

    Article  Google Scholar 

  • Herd, R. M., and P. F. Arthur. 2009. Physiological basis for residual feed intake. J. Anim. Sci. 87:E64-E71.

    Article  PubMed  CAS  Google Scholar 

  • Hoque, M. A., H. Kadowaki, T. Shibata, T. Oikawa, and K. Suzuki. 2007. Genetic parameters for measures of the efficiency of gain of boars and the genetic relationships with its component traits in Duroc pigs. J. Anim. Sci. 85:1873–1879.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, J., I. L. Mao, B. B. Andersen, and P. Madsen. 1992. Phenotypic and genetic relationships between residual energy intake and growth, feed intake, and carcass trait of young bulls. J. Anim. Sci. 70:386–395.

    PubMed  CAS  Google Scholar 

  • Kennedy, B. W., J. H. van der Werf, and T. H. Meuwissen. 1993. Genetic and statistical properties of residual feed intake. J. Anim. Sci. 71:3239–3250.

    PubMed  CAS  Google Scholar 

  • Kim, K. S., N. Larsen, T. Short, G. Plastow, and M. F. Rothschild. 2000. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mammal. Genome 11:131–135.

    Article  CAS  Google Scholar 

  • Koch, R. M., L. A. Swiger, D. Chambers, and K. E. Gregory. 1963. Efficiency of feed use in beef cattle. J. Anim. Sci. 22:486–494.

    Google Scholar 

  • Kolath, W. H., M. S. Kerley, J. W. Golden, and D. H. Kiesler. 2006. The relationship between mitochondrial function and residual feed intake in Angus steers. J. Anim. Sci. 84:861–865.

    Article  PubMed  CAS  Google Scholar 

  • Korver, S., E. A. M. van Eekelen, H. Vos, G. J. Nieuwhof, and J. A. M. van Arendonk. 1991. Genetic parameters for feed intake and feed efficiency in growing dairy heifers. Livest. Prod. Sci. 29:49–59.

    Article  Google Scholar 

  • Lancaster, P. A., G. E. Carstens, D. H. Crews, Jr., T. H. Welsh, Jr., T. D. A. Forbes, D. W. Forrest, L. O. Tedeschi, R. D. Randel, and F. M. Rouquette. 2009. Phenotypic and genetic relationships of residual feed intake with performance and ultrasound carcass traits in Brangus heifers. J. Anim. Sci. 87:3887–3896.

    Article  PubMed  CAS  Google Scholar 

  • Lefaucheur, L., B. Lebret, P. Ecolan, I. Louveau, M. Damon, A. Prunier, Y. Billon, P. Sellier, and H. Gilbert. 2011. Muscle characteristics and meat quality traits are affected by divergent selection on residual feed intake in pigs. J. Anim. Sci. 89:996–1010.

    Article  PubMed  CAS  Google Scholar 

  • Lkhagvadorj, S., L. Qu, W. Cai, O. P. Couture, C. R. Barb, G. J. Hausman, D. Nettleton, L. L. Anderson, J. C. M. Dekkers, and C. K. Tuggle. 2010. Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R494-R507.

    Article  PubMed  CAS  Google Scholar 

  • Moore, K. L., D. J. Johnston, H. U. Graser, and R. M. Herd. 2005. Genetic and phenotypic relationships between insulin-like growth factor-I (IGF-I) and net feed intake, fat and growth traits in Angus beef cattle. Aust. J. Exp. Agric. 56:211–218.

    Article  CAS  Google Scholar 

  • Morisson, M., A. Bordas, J. M. Petit, C. Jayat-Vignoles, R. Julien, and F. Minvielle. 1997. Associated effects of divergent selection for residual feed consumption on reproduction, sperm characteristics, and mitochondria of spermatozoa. Poult. Sci. 76:425–431.

    PubMed  CAS  Google Scholar 

  • Ngwerume, F., and I. L. Mao. 1992. Estimation of residual energy intake for lactating cows using an animal model. J. Dairy Sci. 75:2283–2287.

    Article  PubMed  CAS  Google Scholar 

  • Nkrumah, J. D., D. H. Crews Jr., J. A. Basarab, M. A. Price, E. K. Okine, Z. Wang, C. Li, and S. S. Moore. 2007. Genetic and phenotypic relationships of feeding behavior and temperament with performance, feed efficiency, ultrasound, and carcass merit of beef cattle. J. Anim. Sci. 85:2382–2390.

    Article  PubMed  CAS  Google Scholar 

  • Nkrumah, J. D., E. K. Okine, G. W. Mathison, K. Schmid, C. Li, J. A. Basarab, M. A. Price, Z. Wang, and S. S. Moore. 2006. Relationships of feedlot efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 84:145–153.

    PubMed  CAS  Google Scholar 

  • Rakhshandeh, A., B. M. Adamic, J. M. Young, D. M. Thekkoot, T. E. Weber, M. A. McGuire, J. C. M. Dekkers, and N. K. Gabler. 2012. Effect of selection for residual feed intake on sow performance II. Milk composition. Midwest American Society of Animal Science-American Dairy Science Association Joint Meetings, Abstract #44.

    Google Scholar 

  • Richardson, E. C., R. M. Herd, P. F. Arthur, J. Wright, G. Xu, K. Dibley, and V. H. Oddy. 1996. Possible physiological indicators for net feed conversion efficiency in beef cattle. Proc. Aust. Soc. Anim. Prod. 21:103–106.

    Google Scholar 

  • Richardson, E. C., R. J. Kilgour, J. A. Archer, and R. M. Herd. 1999. Pedometers measure differences in activity in bulls selected for high or low net feed efficiency. Proc Aust. Soc. Study Anim. Behav. 26:16 (Abstr.).

    Google Scholar 

  • Richardson, E. C., R. M. Herd, V. H. Oddy, J. M. Thompson, J. A. Archer, and P. F. Arthur. 2001. Body composition and implications for heat production of Angus steer progeny of parents selected for and against residual feed intake. Aust. J. Exp. Agric. 41:1065–1072.

    Article  Google Scholar 

  • Richardson, E. C., and R. M. Herd. 2004. Biological basis for variation in residual feed intake in beef cattle. 2. Synthesis of results following divergent selection. Aust. J. Exp. Agric. 44:431–440.

    Article  Google Scholar 

  • Richardson, E. C., R. M. Herd, J. A. Archer, and P. F. Arthur. 2004. Metabolic differences in Angus steers divergently selected for residual feed intake. Aust. J. Exp. Agric. 44:441–452.

    Article  Google Scholar 

  • Robinson, D. L., and V. H. Oddy. 2004. Genetic parameters for feed efficiency, fatness, muscle area and feeding behaviour of feedlot finished beef cattle. Livest. Prod. Sci. 90:255–270.

    Article  Google Scholar 

  • Sadler, L. J., A. K. Johnson, S. M. Lonergan, D. Nettleton, and J. C. M. Dekkers. 2011. The effect of selection for residual feed intake on general behavioral activity and the occurrence of lesions in Yorkshire gilts. J. Anim. Sci. 89:258–266.

    Article  PubMed  CAS  Google Scholar 

  • Schenkel, F. S., S. P. Miller, and J. W. Wilton. 2004. Genetic parameters and breed differences for feed efficiency, growth and body composition traits of young beef bulls. Can. J. Anim. Sci. 84:177–185.

    Article  Google Scholar 

  • Shaffer, K. S., P. Turk, W. R. Wagner, and E. E. D. Felton. 2011. Residual feed intake, body composition, and fertility in yearling beef heifers. J. Anim. Sci. 89:1028–1034.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. M., N. K. Gabler, J. M. Young, W. Cai, N. J. Boddicker, M. J. Anderson, E. Huff-Lonergan, J. C. M. Dekkers, and S. M. Lonergan. 2011. Effect of selection for decreased residual feed intake on composition and quality of fresh pork. J. Anim. Sci. 89:192–200.

    Article  PubMed  CAS  Google Scholar 

  • Van Arendonk, J. A. M., G. J. Nieuwhof, H. Vos, and S. Korver. 1991. Genetic aspects of feed intake and feed efficiency in lactating dairy heifers. Livest. Prod. Sci. 29:263–275.

    Article  Google Scholar 

  • Webster, A. J. F., P. O. Osuji, F. White, and J. F. Ingram. 1975. The influence of food intake on portal blood flow and heat production in the digestive tract of the sheep. Br. J. Nutr. 34:125–139.

    PubMed  CAS  Google Scholar 

  • Young, J. M., R. Bergsma, E. F. Knol, J. F. Patience, and J. C. M. Dekkers. 2010. Effect of selection for residual feed intake on sow reproductive performance and lactation efficiency. Proc. 9th WCGALP. Paper #223.

    Google Scholar 

  • Young, J. M., W. Cai, and J. C. M. Dekkers. 2011. Effect of selection for residual feed intake on feeding behavior and daily feed intake patterns in Yorkshire swine. J. Anim. Sci. 89:639–647.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge everyone who has contributed to the RFI selection experiment at Iowa State University including faculty (Tom Baas, Rohan Fernando, Dorian Garrick, Max Rothschild, Chris Tuggle, Elisabeth Lonergan, Steven Lonergan, Nick Gabler, John Patience, Mike Spurlock, Lloyd Anderson, Anna Johnson, Peng Liu, Dan Nettleton, and Vasant Honavar), graduate students (David Casey, Weiguo Cai, Nick Boddicker, Dinesh Thekkoot, Emily Waide, Andrew Hess, Danielle Gorbach, Oliver Couture, Rachel Smith, Kyle Grubbs, Shannon Cruzen, Emily Arkfeld, Venkatesh Mani, Amanda Harris, Jessica Jenkins, Sender Lkhagvadorj, Larry Saddler, and Long Qu), post-docs and research associates (Suneel Onteru, Anoosh Rakhshandeh, and Ed Steadham), and the staff at the Lauren Christian Swine Breeding Research Center. We would also like to acknowledge our collaborators: Bob Rowland’s research group at Kansas State University; Joan Lunney, Tom Weber, and Brian Kerr from USDA-ARS; Kim Bunter and Frank Dunshea from Australia; and Rob Bergsma and Egbert Knol from IPG & Wageningen University. The authors would like to thank PIC/Genus and Newsham Choice Genetics for donating FIRE© feeders. We would also like to thank funding from USDA-CSREES NRI Grants #2010-65206-20670 and #2011-68004-30336, National Pork Producers, Iowa Pork Producers Association, ISU Center for Integrated Animal Genomics, Iowa State and Hatch Funds, Pfizer Animal Health, and USDA Swine Genome Coordinator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. M. Dekkers .

Editor information

John F. Patience

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Wageningen Academic Publishers The Netherlands

About this chapter

Cite this chapter

Young, J.M., Dekkers, J.C.M. (2012). The genetic and biological basis of residual feed intake as a measure of feed efficiency. In: Patience, J.F. (eds) Feed efficiency in swine. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-756-1_7

Download citation

Publish with us

Policies and ethics